留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片

伍垚屹 陈松 张雪娇 王克文 龙金 刘岚

伍垚屹, 陈松, 张雪娇, 等. 冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片[J]. 复合材料学报, 2022, 39(7): 3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001
引用本文: 伍垚屹, 陈松, 张雪娇, 等. 冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片[J]. 复合材料学报, 2022, 39(7): 3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001
WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001
Citation: WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001

冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片

doi: 10.13801/j.cnki.fhclxb.20210906.001
基金项目: 国家自然科学基金 (52073099);广东省自然科学基金(2021A1515010675;2021A1515010714)
详细信息
    通讯作者:

    刘岚,博士,教授,博士生导师,研究方向为导热及导电复合材料  E-mail: psliulan@scut.edu.cn

  • 中图分类号: TB332

Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method

  • 摘要: 制备具有垂直方向高导热、低压缩应力松弛的柔性导热复合材料,并将其应用于大功率电子元器件的导热垫片,对大幅度提升电子器件垂直散热能力具有重要的意义。本文基于冰模板法设计了自下而上垂直定向排列的导热网络来实现高热导率。首先,利用多巴胺改性的羟基化氮化硼纳米片并负载银纳米颗粒(BNNS@PDA/Ag)作为杂化导热填料,再与纤维素纳米纤维(Cellulose nanofiber,CNF)进行复合,采用半导体制冷台为冷源进行定向冷冻,对冷冻后的样品进行冷冻干燥形成气凝胶,再真空浇筑聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)后制得具有高导热和低应力松弛的BNNS@PDA/Ag-PDMS导热垫片。结果表明,理论松弛时间损失随着银纳米颗粒(Ag NPs)含量的提升先减小后增大,气凝胶质量分数达到19.7wt%时,在20%的形变下,3wt%Ag NPs含量对应的导热垫片的理论松弛时间达到32204 s,导热垫片的垂直方向热导率达到3.23 W/(m·K)。利用冰模板法可以制备具有高度取向的垂直填料导热网络,在导热垫片领域具有很好的应用前景。

     

  • 图  1  ((a)~(g)) 多巴胺改性羟基化氮化硼纳米片负载银纳米颗粒气凝胶(BNNS@PDA/Ag)及BNNS@PDA/Ag-聚二甲基硅氧烷(PDMS)复合导热垫片的制备示意图;(h) 气凝胶的内部取向网络和气凝胶实物图;((i), (j)) 导热垫片的实物及弯折过程照片;(k) BNNS@PDA/Ag导热网络示意图

    Figure  1.  ((a)-(g)) Fabrication of dopamine-modified hydroxylated boron nitride nanosheets and silver nanoparticles aerogel (BNNS@PDA/Ag) and BNNS@PDA/Ag-polydimethylsiloxane (PDMS))composite thermal conductivity pad; (h) Internal orientation network of the gel; ((i), (j)) Bending picture of thermal conductive pad; (k) Thermal conductive network of BNNS@PDA/Ag

    CNF—Cellulose nanofiber

    图  2  (a) BNNS与BNNS@PDA的XPS全谱图;(b) BNNS的C1s轨道XPS图谱;(c) BNNS和BNNS@PDA的热失重曲线

    Figure  2.  (a) XPS full spectrum of BNNS and BNNS@PDA; (b) XPS spectrum of B1s of BNNS; (c) Thermal weight loss curve of BNNS and BNNS@PDA

    图  3  (a) h-BN、BNNS@PDA、BNNS@PDA/Ag的XRD图谱;(b)图3(a)的放大图

    Figure  3.  (a) XRD patterns of the h-BN powder, BNNS@PDA, and BNNS@PDA/Ag; (b) Enlarged view of Fig.3(a)

    图  4  BNNS (a)、BNNS@PDA (b) 和BNNS@PDA/Ag (c) 的TEM图像;BNNS@PDA/Ag (d) 的HR-TEM图像

    Figure  4.  TEM images of BNNS (a) , BNNS@PDA (b) and BNNS@PDA/Ag (c); HR-TEM image of BNNS@PDA/Ag (d)

    图  5  不同浓度的BNNS@PDA/Ag气凝胶截面图及在2 mg/mL固定浓度下不同Ag含量对应的气凝胶截面图

    Figure  5.  Cross-section images of aerogels prepared with different concentrations of BNNS@PDA and cross-section images of aerogels with different Ag contents at a fixed concentration of 2 mg/mL BNNS@PDA

    图  6  (a) BNNS@PDA/Ag-PDMS导热垫片截面的SEM图像;(b) 截面放大的SEM图像

    Figure  6.  (a) Cross-sectional SEM image of the BNNS@PDA/Ag-PDMS thermally conductive pad; (b) Enlarged cross-sectional SEM image of the BNNS@PDA/Ag-PDMS pad

    图  8  19.6wt%BNNS@PDA (a) 和3wt%Ag (b) 的BNNS@PDA/Ag-PDMS导热垫片的压缩应力松弛拟合图

    Figure  8.  Fitting curves of 19.6wt%BNNS@PDA (a) and 3wt%Ag (b) of BNNS@PDA/Ag-PDMS thermal conductive pads’ compression stress relaxation

    图  7  (a) 不同的AgNPs含量对应的BNNS@PDA/Ag-PDMS样品压缩应力松弛曲线; (b) 不同的Ag NPs含量对应的BNNS@PDA/Ag-PDMS样品压缩应力-应变曲线

    Figure  7.  (a) Compression stress loss curves of different Ag content of BNNS@PDA/Ag-PDMS; (b) Compression stress-strain curves of different Ag content of BNNS@PDA/Ag-PDMS

    图  9  不同质量份数的气凝胶及定份数下的不同含量Ag NPs的BNNS@PDA/Ag-PDMS导热垫片热导率图:(a) 不同份数的气凝胶热导率;(b)不同含量的Ag NPs热导率

    Figure  9.  Thermal conductivity of BNNS@PDA/Ag-PDMS thermally conductive pads with different mass fractions of aerogel and different content of Ag NPs under a fixed number of aerogel’s fraction: (a) Thermal conductivity of different fractions of aerogel; (b) Thermal conductivity of different content of Ag NPs

    图  10  相关报道的BNNS基复合材料垂直热导率对比[23-30]

    Figure  10.  Vertical thermal conductivity of different BNNS-based composites in previous reports[23-30]

    PMMA—Polymethyl methacrylate; CNT—Carbon nanotube; PET—Polyethylene terephthalate; NFC—Nanocellulose; rGO—Reduced graphene oxide; GNP—Graphite nanosheet; PPS—Polyphenylene sulfite

    图  11  纯CNF、BNNS@PDA、BNNS@PDA/Ag三个不同填料类型的导热垫片热成像图

    Figure  11.  Infrared thermal image of thermally conductive pads with three different filler types: pure CNF, BNNS@PDA, and BNNS@PDA/Ag

    图  12  BNNS@PDA/Ag-PDMS导热垫片界面热阻应用模拟测试图

    Figure  12.  Simulation of interface thermal resistance of BNNS@PDA/Ag-PDMS thermally conductive pads

    图  13  纯纤维素纳米纤维(CNF)、BNNS@PDA和BNNS@PDA/Ag三个不同填料类型的导热垫片界面热阻热成像图

    Figure  13.  Infrared thermal image of interface thermal resistance of thermally conductive pad with three different filler types of pure cellulose nanofiber (CNF), BNNS@PDA and BNNS@PDA/Ag

    图  14  不同Ag NPs含量下BNNS@PDA/Ag-PDMS导热垫片的体积电阻率图

    Figure  14.  Electrical resistivity of of BNNS@PDA/Ag-PDMS thermally conductive pad with different Ag NPs contents

    表  1  BNNS@PDA/PDMS 导热垫片的填料质量分数表

    Table  1.   Mass fraction of filler in BNNS@PDA/PDMS thermally conductive pad

    Concentration of the suspensions/(mg·mL−1)Mass of BNNS@PDA/mgMass of CNF/mgMass of aerogels/mgMass fraction of elastomer composites/wt%
    110253516.4
    220254519.6
    330255524.3
    440256526.9
    下载: 导出CSV

    表  2  BNNS@PDA/PDMS导热垫片的理论松弛时间表

    Table  2.   Theoretical relaxation time of BNNS@PDA/PDMS thermal pad

    Mass of BNNS@PDA/mgCompressive stress at 20% strain/MPaTheoretical relaxation time/s
    0(Pure CNF)0.2728852
    100.3232107
    200.4034886
    300.4633471
    400.5432152
    下载: 导出CSV

    表  3  不同填料分数的BNNS@PDA/PDMS 导热垫片的导热性能参数

    Table  3.   Thermal conductivity parameters of BNNS@PDA/PDMS thermal pads with different filler mass fractions

    Filler concentration/
    (mg·mL−1)
    Mass fraction of aerogel
    after infiltration/wt%
    Density/
    (g·cm−3)
    Specific heat/
    (J·(g·K)−1)
    Thermal diffusity/
    (mm2·s−1)
    Thermal conductivity/
    (W·(m·K)−1)
    0Pure PDMS0.781.820.140.21
    116.41.151.700.290.57
    219.61.261.630.831.70
    324.31.311.551.142.32
    426.91.401.381.563.02
    下载: 导出CSV
  • [1] 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4):760-766.

    WU Yuming, YU Jinhong, CAO Yong, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica,2018,35(4):760-766(in Chinese).
    [2] OUYANG T, CHEN Y P, XIE Y E, et al. Thermal transport in hexagonal boron nitridenanoribbons[J]. Nano-technology,2010,21(24):245701. doi: 10.1088/0957-4484/21/24/245701
    [3] BRESNEHAN M S. Synthesis and characterization of hexagonal boron nitride for integration with graphene electronics[D]. Pennsylvania: The Pennsylvania State University, 2013.
    [4] XUE B, ZHANG C X, ZENG X L, et al. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks[J]. Composites Communications,2021,24:100650. doi: 10.1016/j.coco.2021.100650
    [5] WANG T, OU D H, LIU H H, et al. Thermally conductive boron nitride nanosheet composite paper as a flexible printed circuit board[J]. ACS Applied Nano Mater-ials,2018,1(4):1705-1712. doi: 10.1021/acsanm.8b00160
    [6] WU Y J, ZHANG X X, NEGI A, et al. Synergistic effects of boron nitride (BN) nanosheets and silver (Ag) nanoparticles on thermal conductivity and electrical properties of epoxy nanocomposites[J]. Polymers,2020,12(2):426. doi: 10.3390/polym12020426
    [7] LI R Y, LV X W, YU J, et al. Dielectric, thermally conductive, and heat-resistant polyimide composite film filled with silver nanoparticle-modified hexagonal boron nitride[J]. High Performance Polymers,2020,32(10):1181-1190. doi: 10.1177/0954008320938846
    [8] CHEN C, XUE Y, LI Z. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal,2019,369:1150-1160. doi: 10.1016/j.cej.2019.03.150
    [9] CHEN H Y, VALERIY V G, JIAN Y, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85.
    [10] GUO Y Q, PAN L L, YANG X T, et al. Simultaneous improvement of thermal conductivities andelectromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105484. doi: 10.1016/j.compositesa.2019.105484
    [11] VU M C, KIM I H, CHOI W K, et al. Highly flexible graphene derivative hybrid film: An outstanding nonflammable thermally conductive yet electrically insulating material for efficient thermal management[J]. ACS Applied Materials & Interfaces,2020,12(23):26413-26423.
    [12] ZENG X L, YE L, YU S H, et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties[J]. Nanoscale,2015,7(15):6774-6781. doi: 10.1039/C5NR00228A
    [13] YUAN J, QIAN X T, MENG Z C, et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation[J]. ACS Applied Mater-ials & Interfaces,2019,11(19):17915-17924.
    [14] ZENG X L, YAO Y M, GONG Z Y, et al. Ice-templated assembly strategy to construct 3d boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173
    [15] JI C, WANG Y, YE Z Q, et al. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials[J]. ACS Applied Materials & Interfaces,2020,12(21):24298-24307.
    [16] 杜虎, 吴钢, 庞之洋, 等. 基于界面热阻等效模型的超导磁体热输运分析[J]. 低温与超导, 2011, 39(07):25-29. doi: 10.3969/j.issn.1001-7100.2011.07.006

    DU Hu, WU Gang, PANG Zhiyang, et al. Thermal transport analysis of superconducting magnet based on equivalent model of interface thermal resistance[J]. Cryogenics and Superconductivity,2011,39(07):25-29(in Chinese). doi: 10.3969/j.issn.1001-7100.2011.07.006
    [17] 宋成轶, 栾添, 邬剑波, 等. 聚合物基热界面材料界面接触热阻的研究进展[J]. 集成技术, 2019, 8(1):54-67.

    SONG Chengyi, LUAN Tian, WU Jianbo, et al. Research progress on the interface contact thermal resistance of polymer-based thermal interface materials[J]. Integrated Technology,2019,8(1):54-67(in Chinese).
    [18] SHEN H, GUO J, WANG H, et al. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure[J]. ACS Applied Materials & Interfaces,2015,7(10):5701-5708.
    [19] ZHAO H R, DING J H, SHAO Z Z, et al. High-quality boron nitride nanosheets and their bioinspired thermally conductive papers[J]. ACS Applied Materials & Interfaces,2019,11(40):37247-37255.
    [20] WANG L, WU W, DRUMMER D, et al. Study on thermal conductive PA6 composites with 3-dimensional structured boron nitride hybrids[J]. Journal of Applied Polymer Science,2019,136(23):47630. doi: 10.1002/app.47630
    [21] WANG F F, ZENG X L, YAO Y M, et al. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity[J]. Scientific Reports,2016,6(1):19394. doi: 10.1038/srep19394
    [22] 卫延斌, 史仪凯, 刘澎. 粘弹性材料剪切模量松弛函数的拟合研究[J]. 兵工学报, 2010, 31(10):1409-1412.

    WEI Yanbin, SHI Yikai, LIU Peng. Research on fitting the shear modulus relaxation function of viscoelastic materials[J]. Acta Armamentarii,2010,31(10):1409-1412(in Chinese).
    [23] WANG X B, PAKDEL A, ZHANG J, et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties[J]. Nanoscale Research Letters,2012,7(1):1-7. doi: 10.1186/1556-276X-7-1
    [24] ZAMEL N, LITOVSKY E, LI X G, et al. Measurement of the through-plane thermal conductivity of carbon paper diffusion media for the temperature range from -50 to +120℃[J]. International Journal of Hydrogen Energy,2011,36(19):12618-12625. doi: 10.1016/j.ijhydene.2011.06.097
    [25] YAO Y M, ZHU X D, ZENG X L, et al. Vertically aligned and interconnected sic nanowire networks leading to significantly enhanced thermal conductivity of polymer composites[J]. ACS Applied Materials & Interfaces,2018,10(11):9669-9678.
    [26] PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets[J]. Journal of Materials Chemistry A,2018,6(8):3522-3533. doi: 10.1039/C7TA10888E
    [27] KIM K, KIM J. BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating[J]. Polymer,2016,101:168-175.
    [28] TIAN X J, ITKIS M E, HADDON R C. Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet-based thermal interface layers[J]. Scientific Reports,2015,5(1):13108. doi: 10.1038/srep13108
    [29] SONG N, JIAO D J, CUI S Q, et al. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS Applied Materials & Interfaces,2017,9(3):2924-2932.
    [30] JI C, YAN C Z, WANG Y, et al. Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network[J]. Composites Part B: Engineering,2019,163:363-370.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  384
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 修回日期:  2021-08-11
  • 录用日期:  2021-08-16
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回