留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展

李小伟 曹旗

李小伟, 曹旗. FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展[J]. 复合材料学报, 2022, 39(3): 926-941. doi: 10.13801/j.cnki.fhclxb.20210902.004
引用本文: 李小伟, 曹旗. FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展[J]. 复合材料学报, 2022, 39(3): 926-941. doi: 10.13801/j.cnki.fhclxb.20210902.004
LI Xiaowei, CAO Qi. Research progress on mechanical properties of FRP reinforced seawater coral aggregate concrete materials and structural components[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 926-941. doi: 10.13801/j.cnki.fhclxb.20210902.004
Citation: LI Xiaowei, CAO Qi. Research progress on mechanical properties of FRP reinforced seawater coral aggregate concrete materials and structural components[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 926-941. doi: 10.13801/j.cnki.fhclxb.20210902.004

FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展

doi: 10.13801/j.cnki.fhclxb.20210902.004
基金项目: 中央高校基本科研业务费科研专题项目(DUT20JC02);大连市高层次人才创新计划项目(2019RD05)
详细信息
    通讯作者:

    曹旗,博士,副教授,研究方向为纤维复材增强和加固混凝土结构、高性能混凝土材料和结构 E-mail:qcao@dlut.edu.cn

  • 中图分类号: TU599

Research progress on mechanical properties of FRP reinforced seawater coral aggregate concrete materials and structural components

  • 摘要: 为解决钢筋锈蚀和资源短缺问题,具有轻质高强、耐腐蚀特点的纤维增强聚合物(FRP)筋以及与普通骨料力学性能相近的珊瑚骨料成为近年来人们研究的新材料。本文从FRP与珊瑚骨料的材料特性及珊瑚骨料混凝土力学性能、FRP筋与珊瑚骨料混凝土黏结性能以及耐久性、FRP筋海水珊瑚骨料混凝土梁、柱构件的受力性能三个方面,对国内外相关研究进行对比分析,归纳出现有研究成果,认为FRP筋与珊瑚骨料混凝土有较好的协调工作性,并且可以有效增强珊瑚骨料混凝土结构的性能。此外总结出目前FRP筋、珊瑚骨料等材料的局限性以及FRP珊瑚骨料混凝土构件使用性能、耐久性能和设计方法研究还存在的不足,为FRP筋海水珊瑚骨料混凝土这种新型结构的继续研究提供参考。

     

  • 图  1  珊瑚骨料宏观形态[12]

    Figure  1.  Macromorphology of coral aggregate[12]

    图  2  珊瑚骨料微观形态[15]

    Figure  2.  Microscopic morphology of coral aggregate[15]

    图  3  修正模型下GFRP筋剩余强度衰减拟合曲线[26]

    Figure  3.  Fitting curve of residual strength degradation of GFRP bars based on the modified model[26]

    图  4  珊瑚混凝土(SC40)与普通混凝土(C40)应力-应变曲线比较[51]

    Figure  4.  Comparison of stress-strain curves between coral concrete (SC40) and ordinary concrete (C40) [51]

    图  5  GFRP筋珊瑚骨料混凝土拉拔试件拔出破坏形态[54]

    Figure  5.  Failure mode of GFRP reinforced coral aggregate concrete pull-out specimen [54]

    图  6  GFRP筋珊瑚骨料混凝土拉拔试件劈裂破坏形态[54]

    Figure  6.  Splitting failure mode of GFRP reinforced coral aggregate concrete drawing specimen [54]

    图  7  不同根数GFRP筋增强珊瑚骨料混凝土荷载-挠度曲线[73]

    Figure  7.  Load-deflection curves of coral aggregate concrete reinforced with different number of GFRP bars [73]

    表  1  纤维增强聚合物(FRP)筋基本力学性能

    Table  1.   Basic mechanical properties of fiber reinforced polymer (FRP) bars

    Type of FRPDensity/(g·cm-3)Tensile strength/MPaElasticity modulus/GPaUltimate elongation/%
    AFRP1.25-1.401720-254041-1251.9-4.4
    BFRP1.5-2.0800-180045-551.5-2.0
    CFRP1.50-1.601500-2500120-1600.5-1.7
    GFRP1.25-2.10483-160035-511.2-3.1
    Notes: AFRP—Aramid fiber reinforced polymer; BFRP—Basalt fiber reinforced polymer; CFRP—Carbon fiber reinforced polymer; GFRP—Glass fiber reinforced polymer.
    下载: 导出CSV

    表  2  FRP筋混凝土常用的黏结–滑移本构模型

    Table  2.   Bond-slip constitutive models of FRP reinforced concrete

    Bond-slip constitutive modelBond-slip constitutive expression
    BPE model $ \dfrac{\tau }{{\tau }_{1}} $=$\left(\dfrac{s}{ { {s_1} } }\right)^{a}$ (s$ \leqslant {s}_{1} $);$ \tau ={\tau }_{1} $($ {s}_{1} < s\leqslant {s}_{2} $);$ \tau ={\tau }_{1} $−$\dfrac{ {\tau }_{1}-{\tau }_{3} }{ {s}_{2}-{s}_{3} }$(${s}_{2}-s$)($ {s}_{2} < s\leqslant {s}_{3} $)
    Improved BPE model $ \dfrac{\tau }{{\tau }_{1}} $=$\left(\dfrac{s}{ { {s_1} } }\right)^{a}$ (s$ \leqslant {s}_{1} $);$ \dfrac{\tau }{{\tau }_{1}}=1-p\left(\dfrac{s}{{s}_{1}}-1\right) $ ($ {s}_{1} < s\leqslant {s}_{2} $);$ \tau ={\tau }_{3} $($ s > {s}_{2} $)
    CMR model $ \dfrac{\tau }{{\tau }_{\mathrm{m}}} $=$ {(1-{\mathrm{e}}^{\tfrac{s}{{s}_{\rm{r}}}})}^{\beta } $
    Malver model $ \dfrac{\tau }{{\tau }_{\rm{m}}} $=$\dfrac{F\left(\dfrac{s}{ {s}_{\mathrm{m} } }\right)+(G-1){\left(\dfrac{s}{ { {s_{\rm{m} } } } }\right)}^{2} }{1+\left(F-2\right)\left(\dfrac{s}{ { {s_{\rm{m}}} } }\right)+G\left(\dfrac{s}{ { {s_{\rm{m} } } } }\right)^{2} }$;$ \dfrac{\tau }{{f}_{1}} $=A+B(1−$ {\mathrm{e}}^{-\tfrac{{c}_{\sigma }}{{f}_{\rm{t}}}} $);${s}_{\mathrm{m} }$=D+E$ \sigma $
    Continuous curve model $ \dfrac{\tau }{{\tau }_{1}} $=2$\sqrt{\dfrac{s}{ {s}_{0} } }-\dfrac{s}{ {s}_{0} }$ ($ 0 < s\leqslant {s}_{0} $);

    $\tau ={\tau }_{0}\dfrac{ {\left({s}_{\mathrm{u} }-s\right)}^{2}(2s+{s}_{\mathrm{u} }-3{s}_{0})}{ {({s}_{\mathrm{u} }-{s}_{0})}^{3} }$ + ${\tau }_{\mathrm{u} }\dfrac{ {\left(s-{s}_{0}\right)}^{2}(3{s}_{\mathrm{u} }-2s-{s}_{0})}{ {({s}_{\mathrm{u} }-{s}_{0})}^{3} }$ ($ {s}_{0} < s\leqslant {s}_{\mathrm{u}} $)
    Notes: $ {s}_{1} $, $ {s}_{2} $, $ {s}_{3} $, p, $ {s}_{\rm{r}} $, β—Parameters determined by experiments; $ {\tau }_{1} $,$ {\tau }_{\mathrm{m}} $—Peak bond strength; $ {s}_{1} $,$ {s}_{\mathrm{m}} $—Slip value corresponding to peak bond strength; α—Constant not greater than 1; σ—Axisymmetric confined radial pressure; $ {f}_{\mathrm{t}} $—Compressive strength of concrete; A, B, C, D, E, F, G—Constants determined by fitting the type of reinforcement according to the test data.
    下载: 导出CSV
  • [1] 周继凯, 何旭, 王泽宇, 等. 海水海砂混凝土与潜在危害研究进展[J]. 科学技术与工程, 2018, 18(24):179-187. doi: 10.3969/j.issn.1671-1815.2018.24.026

    ZHOU J K, HE X, WANG Z Y, et al. Research progress on seawater and sea sand concrete and its potential hazards[J]. Science Technology and Engineering,2018,18(24):179-187(in Chinese). doi: 10.3969/j.issn.1671-1815.2018.24.026
    [2] 秦斌. 海水海砂混凝土基本力学性能研究[J]. 混凝土, 2019(2):90-91.

    QIN B. Basic mechanical properties of seawater and sea sand concrete[J]. Concrete,2019(2):90-91(in Chinese).
    [3] 王磊, 赵艳林, 吕海波. 珊瑚骨料混凝土的基础性能及研究应用前景[J]. 混凝土, 2012(2):99-100+113. doi: 10.3969/j.issn.1002-3550.2012.02.031

    WANG L, ZHAO Y L, LV H B. Prospect on the properties and application situation of coral aggregate concrete[J]. Concrete,2012(2):99-100+113(in Chinese). doi: 10.3969/j.issn.1002-3550.2012.02.031
    [4] 侯磊, 李伟华, 郑海兵, 等. 海洋钢筋混凝土结构防腐蚀技术研究进展[J]. 材料保护, 2017, 50(3):62-67.

    HOU L, LI W H, ZHENG H B, et al. Recent advances and development of corrosion prevention technologies for marine reinforced concrete structures[J]. Materials Protection,2017,50(3):62-67(in Chinese).
    [5] Sally. Motor speedway bridge collapse caused by corrosion[J]. Materials Performance,2000(7):18-19.
    [6] 杨泽宇, 朱春阳, 孙丽. FRP筋及FRP筋混凝土受压构件力学性能及耐久性研究进展与应用前景分析[C]//第十三届沈阳科学学术年会论文集(理工农医). 沈阳: 沈阳市科学技术协会, 2016: 7.

    YANG Z Y, ZHU C Y, SUN L. Research progress and application prospect of mechanical properties and durability of FRP bars and FRP bars concrete compression members[C]//Proceedings of the 13th Shenyang Scientific Academic Annual Meeting (Science, Technology, Agriculture and Medicine. Shenyang: Shenyang Science and Technology Association, 2016: 7(in Chinese).
    [7] 何政, 欧进萍, 王勃, 等. FRP筋及其配筋混凝土构件的力学性能与智能特性[C]//第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集. 昆明: 中国土木工程学会混凝土与预应力混凝土分会纤维增强塑料(FRP)及工程应用专业委员会, 2002: 11.

    HE Z, OU J P, WANG B, et al. Mechanical properties and intelligent characteristics of FRP bars and their reinforced concrete members[C]//Proceedings of the Second National Symposium on Application Technology of FRP for Civil Engineering. Kunming: Professional Committee of Fiber Reinforced Plastics (FRP) and Engineering Application of China Civil Engineering Society Concrete and Prestressed Concrete Branch, 2002: 11(in Chinese).
    [8] 张鹏, 桂金洋, 邓宇, 等. 偏心受拉作用下预应力CFRP筋-型钢混凝土构件抗裂试验[J]. 复合材料学报, 2021, 38(3):920-931.

    ZHANG P, GUI J Y, DENG Y, et al. Experiment on crack resistance of prestressed CFRP tendons-steel reinforced concrete members under eccentric tension[J]. Acta Materiae Compositae Sinica,2021,38(3):920-931(in Chinese).
    [9] 薛伟辰. FRP筋增强混凝土结构研究的一些新进展[C]//低成本、高性能复合材料发展论坛论文集. 石家庄: 中国科学技术协会学会学术部, 2012: 246-250.

    XUE W C. Some new progress in the research of FRP reinforced concrete structures[C]//Proceedings of the Forum on Development of Low-cost and High-performance Composite Materials. Shijiazhuang: Academic Department of China Association for Science and Technology, 2012: 246-250(in Chinese).
    [10] 中华人民共和国住房和城乡建设部. GB 50608—2010 纤维增强复合材料建设工程应用技术规范[S]. 北京: 中国计划出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50608—2010 Technical code for infrastructure application of FRP composites[S]. Beijing: China Planning Press, 2010.
    [11] 王以贵. 珊瑚混凝土在港工中应用的可行性[J]. 水运工程, 1988(9):46-48.

    WANG Y G. The feasibility of coral concrete application in the port industry[J]. Port and Waterway Engineering,1988(9):46-48(in Chinese).
    [12] 苏丽, 牛荻涛, 罗大明. 珊瑚骨料混凝土力学性能及耐久性能研究[J]. 材料导报, 2018, 32(19):3387-3393. doi: 10.11896/j.issn.1005-023X.2018.19.013

    SU L, NIU D T, LUO D M. Research of coral aggregate concrete on mechanical property and durability[J]. Materials Reports,2018,32(19):3387-3393(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.19.013
    [13] 陈兆林, 孙国峰, 唐筱宁, 等. 岛礁工程海水拌养珊瑚礁、砂混凝土修补与应用研究[J]. 海岸工程, 2008, 27(4):60-69. doi: 10.3969/j.issn.1002-3682.2008.04.009

    CHEN Z L, SUN G F, TANG X N, et al. Study on applications of concretes from coral reef sand mixed with seawater for patching-up in reef engineering[J]. Coast Engineering,2008,27(4):60-69(in Chinese). doi: 10.3969/j.issn.1002-3682.2008.04.009
    [14] 李林. 珊瑚混凝土的基本特性研究[D]. 桂林: 广西大学, 2012.

    LI L. Research on basic characteristics of coral concrete[D]. Guilin: Guangxi University, 2012(in Chinese).
    [15] 紫民, 刘旷怡, 刘松, 等. 珊瑚礁砂细骨料基本性能研究[J]. 建材世界, 2015, 36(5):11-14. doi: 10.3963/j.issn.1674-6066.2015.05.003

    ZI M, LIU K Y, LIU S, et al. Study on the basic properties of coral sand used as fine aggregate[J]. The World of Building Materials,2015,36(5):11-14(in Chinese). doi: 10.3963/j.issn.1674-6066.2015.05.003
    [16] 苏晨, 麻海燕, 余红发, 等. 不同珊瑚骨料对珊瑚混凝土力学性能的影响[J]. 硅酸盐学报, 2020, 48(11):1771-1780.

    SU C, MA H Y, YU H F, et al. Effect of different coral aggregates on mechanical properties of coral concrete[J]. Journal of the Chinese Ceramic Society,2020,48(11):1771-1780(in Chinese).
    [17] 周文, 周永祥, 宋普涛, 等. 低品位全珊瑚骨料混凝土强度提升技术研究[J]. 混凝土与水泥制品, 2019(4):1-3.

    ZHOU W, ZHOU Y X, SONG P T, et al. Study on strength improvement technology of low-grade all coral aggregate concrete[J]. China Concrete And Cement Products,2019(4):1-3(in Chinese).
    [18] 李林, 赵艳林, 吕海波, 等. 珊瑚骨料预湿对混凝土力学性能的影响[J]. 混凝土, 2011(1):85-86. doi: 10.3969/j.issn.1002-3550.2011.01.023

    LI L, ZHAO Y L, LV H B, et al. Coral aggregate pre-wet on the mechanical properties of concrete[J]. Concrete,2011(1):85-86(in Chinese). doi: 10.3969/j.issn.1002-3550.2011.01.023
    [19] 汤杰. BFRP增强珊瑚礁砂混凝土基本构件力学性能研究[D].南京: 东南大学, 2018: 12-44.

    TANG J. Study on the mechanical properties of BFRP reinforced coral reef and sand concrete structural members[D]. Nanjing: Southeast University, 2018: 12-44(in Chinese).
    [20] 姜浩, 朱思宇. 玄武岩纤维筋的性能及应用研究综述[J]. 四川建材, 2017, 43(8):1-2. doi: 10.3969/j.issn.1672-4011.2017.08.001

    JIANG H, ZHU S Y. Review on the properties and application of basalt fiber reinforcement[J]. Sichuan Building Materials,2017,43(8):1-2(in Chinese). doi: 10.3969/j.issn.1672-4011.2017.08.001
    [21] 李筠. 玄武岩纤维筋材力学性能试验研究[J]. 交通科技, 2016(1):140-142. doi: 10.3963/j.issn.1671-7570.2016.01.044

    LI J. Experimental study on mechanical properties of basalt fiber reinforcement[J]. Transportation Science & Technology,2016(1):140-142(in Chinese). doi: 10.3963/j.issn.1671-7570.2016.01.044
    [22] 胡长顺. 全珊瑚骨料海水混凝土与FRP筋粘结性能试验研究[D]. 北京: 中国矿业大学, 2020.

    HU C S. Experimental study on the bonding performance of full coral aggregate seawater concrete with FRP bars[D]. Beijing: China University of Mining and Technology, 2020(in Chinese).
    [23] 邢丽, 赵嘉伟, 曹喜. GFRP筋海砂海水混凝土梁试验[J]. 浙江树人大学学报(自然科学版), 2016, 16(1):35-38, 44.

    XING L, ZHAO J W, CAO X. Test of GFRP reinforced sea sand and seawater concrete beams[J]. Journal of Zhejiang Shuren University (Natural Science Edition),2016,16(1):35-38, 44(in Chinese).
    [24] 陈爽, 梁淑嘉, 关纪文. FRP筋-珊瑚混凝土柱轴心受压承载力[J]. 复合材料学报, 2021, 38(10): 3519-3530.

    CHEN S, LIANG S J, GUAN J W. Compression behavior of FRP bars-coral concrete columns under axial compression loading[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3519-3530(in Chinese).
    [25] WANG X, SHI J, WU Z, et al. Fatigue behavior of basalt fiber reinforced polymer tendons for prestressing applications[J]. Journal of Composites for Construction,2016,20(3):04015079. doi: 10.1061/(ASCE)CC.1943-5614.0000649
    [26] 高永红, 黄孝国, 刘华琛, 等. 碱液下GFRP筋力学性能劣化模型研究[J]. 中国塑料, 2018, 32(9):85-89, 134.

    GAO Y H, HUANG X G, LIU H C, et al. Study on determination model of mechanical properties of CFRP bars in alkaline solution[J]. China Plastics,2018,32(9):85-89, 134(in Chinese).
    [27] 王伟, 薛伟辰. 碱环境下GFRP筋拉伸性能加速老化试验研究[J]. 建筑材料学报, 2012, 15(6):760-766. doi: 10.3969/j.issn.1007-9629.2012.06.006

    WANG W, XUE W C. Accelerated aging tests for evaluations of tensile properties of GFRP rebars exposed to alkaline solution[J]. Journal of Building Materials,2012,15(6):760-766(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.06.006
    [28] WU G, DONG Z Q, WANG X, et al. Prediction of long-term performance and durability of BFRP bars under the combined effect of sustained load and corrosive solutions[J]. Journal of Composites for Construction,2015,19(3):04014058. doi: 10.1061/(ASCE)CC.1943-5614.0000517
    [29] BENMOKRANE B, ALI A H, MOHAMED H M, et al. Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures[J]. Composites Part B: Engineering,2017,114:163-174.
    [30] WANG Z K, ZHAO X L, XIAN G, et al. Long-term durability of basalt- and glass-fiber reinforced polymer(BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials,2017,139:467-489. doi: 10.1016/j.conbuildmat.2017.02.038
    [31] 糜人杰, 余红发, 麻海燕, 等. 全珊瑚骨料海水混凝土力学性能试验研究[J]. 海洋工程, 2016, 34(4):47-54.

    MI R J, YU H F, MA H Y, et al. Study on the mechanical property of coral concrete[J]. Ocean Engineering,2016,34(4):47-54(in Chinese).
    [32] 韦灼彬, 李仲欣, 沈锦林. 珊瑚混凝土性能影响因素及早期力学性质研究[J]. 工业建筑, 2017, 47(3):130-136.

    WEI Z B, LI Z X, SHEN J L. Research on the influencing factors of performance of coral concrete and its early mechanical property[J]. Industrial Construction,2017,47(3):130-136(in Chinese).
    [33] 孙潇, 韦灼彬, 高屹. 海水拌养珊瑚骨料混凝土配合比试验研究[J]. 四川建筑, 2016, 36(1):204-206. doi: 10.3969/j.issn.1007-8983.2016.01.072

    SUN X, WEI Z B, GAO Y. Experimental study on the mixture ratio of coral aggregate concrete mixed with seawater[J]. Sichuan Architecture,2016,36(1):204-206(in Chinese). doi: 10.3969/j.issn.1007-8983.2016.01.072
    [34] 马林建, 罗棕木, 段力群, 等. 全珊瑚混凝土的脆性评价[J]. 中国矿业大学学报, 2021, 50(2):281-288.

    MA L J, LUO Z M, DUAN L Q, et al. Brittleness evaluation of coral concrete[J]. Journal of China University of Mining and Technology,2021,50(2):281-288(in Chinese).
    [35] 陈宗平, 梁宇涵. 海水拌合珊瑚砂混凝土轴压性能试验研究[J]. 广西大学学报(自然科学版), 2020, 45(5):967-977.

    CHEN Z P, LIANG Y H. Experimental study of axial compression performance of seawater mixed coral sand aggregate concrete[J]. Journal of Guangxi University (Natural Science Edition),2020,45(5):967-977(in Chinese).
    [36] ZHOU W, FENG P, LIN H W. Constitutive relations of coral aggregate concrete under uniaxial and triaxial compression[J]. Construction and Building Materials,2020,251:118957. doi: 10.1016/j.conbuildmat.2020.118957
    [37] 郑秀梅, 杨国生, 黄杨. 南海海域全珊瑚海水混凝土抗压强度试验研究[J]. 混凝土, 2019(5):135-137, 141. doi: 10.3969/j.issn.1002-3550.2019.05.033

    ZHENG X M, YANG G S, HUANG Y. Experimental study on compressive strength of full coral marine concrete in the South China Sea[J]. Concrete,2019(5):135-137, 141(in Chinese). doi: 10.3969/j.issn.1002-3550.2019.05.033
    [38] 郭东, 苏春义, 彭自强, 等. 海水拌和珊瑚礁砂混凝土力学性能及微观结构[J]. 建筑材料学报, 2018, 21(1):41-46. doi: 10.3969/j.issn.1007-9629.2018.01.007

    GUO D, SU C Y, PENG Z Q, et al. Mechanical properties and microstructure of concrete prepared with coral reef sand and sea water[J]. Journal of Building Materials,2018,21(1):41-46(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.01.007
    [39] 许玮滢, 杨树桐, 孙赫, 等. 碱激发矿粉海水珊瑚骨料混凝土力学性能研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2):243-248.

    XU W Y, YANG S T, SUN H, et al. Study on the mechanical properties of seawater coral alkali-activated slag concrete[J]. Journal of Xian University of Architecture & Technology (Natural Science Edition),2019,51(2):243-248(in Chinese).
    [40] 王建平, 李新平, 郭东, 等. 海水-珊瑚砂混凝土力学性能及微结构演变[J]. 建材世界, 2019, 40(2):11-15.

    WANG J P, LI X P, GUO D, et al. Durability of concrete prepared with coral reef sand and sea-water[J]. The World of Building Materials,2019,40(2):11-15(in Chinese).
    [41] MA L J, LI Z, LIU J G, et al. Mechanical properties of coral concrete subjected to uniaxial dynamic compression[J]. Construction and Building Materials,2019,199:244-255. doi: 10.1016/j.conbuildmat.2018.12.032
    [42] 鲁于, 黄一杰, 王海超, 等. 改性海水海砂珊瑚混凝土力学性能试验研究[J]. 混凝土, 2019(4):150-154. doi: 10.3969/j.issn.1002-3550.2019.04.035

    LU Y, HUANG Y J, WANG H C, et al. Experimental study on the mechanical properties of modified seawater sea sand coral concrete[J]. Concrete,2019(4):150-154(in Chinese). doi: 10.3969/j.issn.1002-3550.2019.04.035
    [43] HUANG Y J, HE X J, SUN H S, et al. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete[J]. Construction and Building Materials,2018,192:330-347. doi: 10.1016/j.conbuildmat.2018.10.111
    [44] LIU B, GUO J H, ZHOU J K, et al. The mechanical properties and microstructure of carbon fibers reinforced coral concrete[J]. Construction and Building Materials,2020,249:118771. doi: 10.1016/j.conbuildmat.2020.118771
    [45] 王振波, 刘伟康, 韩宇栋, 等. 实现高强度海水珊瑚骨料混凝土的配合比设计[J]. 工业建筑, 2021, 51(6): 181-185.

    WANG Z B, LIU W K, HAN Y D, et al. To wards high strength seawater coral aggregate concrete through mix proportion design[J]. Industrial Construction, 2021, 51(6): 181-185.
    [46] WANG J. Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes[J]. Construction and Building Materials,2017,147:272-285. doi: 10.1016/j.conbuildmat.2017.04.169
    [47] LIU K Z, YU R, SHUI Z H, et al. Influence of external water introduced by coral sand on autogenous shrinkage and microstructure development of ultra-high strength concrete (UHSC)[J]. Construction and Building Materials,2020,252:119111. doi: 10.1016/j.conbuildmat.2020.119111
    [48] LIU B, ZHOU Z K, WEN X Y, et al. Mechanical properties and constitutive model of carbon fiber reinforced coral concrete under uniaxial compression[J]. Construction and Building Materials,2020,263:120649. doi: 10.1016/j.conbuildmat.2020.120649
    [49] DA B, YU H F, MA H Y, et al. Experimental research on whole stress-strain curves of coral aggregate seawater concrete under uniaxial compression[J]. Journal of Building Structures,2017,38(1):144-151.
    [50] GUO Z H, ZHANG X Q, ZHANG D C, et al. Experiment investigation of the complete stress-strain curve of concrete[J]. Build Structure,1982,3(1):3-14.
    [51] 胡乔, 陈小兵, 阳涛, 等. 珊瑚混凝土梁抗弯性能试验研究[J]. 混凝土, 2017(4):21-24, 28. doi: 10.3969/j.issn.1002-3550.2017.04.006

    HU Q, CHEN X B, YANG T, et al. Flexural properties of coral concrete beam[J]. Concrete,2017(4):21-24, 28(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.04.006
    [52] 王磊, 毛亚东, 陈爽, 等. GFRP筋与珊瑚混凝土黏结性能的试验研究[J]. 建筑材料学报, 2018, 21(2):286-292. doi: 10.3969/j.issn.1007-9629.2018.02.018

    WANG L, MAO Y D, CHEN S, et al. The experimental research on bond performance between GFRP bars and the coral concrete[J]. Journal of Building Materials,2018,21(2):286-292(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.02.018
    [53] 陈爽.湿热海洋环境下FRP筋-珊瑚混凝土粘结滑移性能研究[D]. 桂林: 广西大学, 2019.

    CHEN S. Study on bond property between FRP bars and coral concrete under marine environment[D]. Guilin: Guangxi University, 2019(in Chinese).
    [54] 李晓禹.海砂珊瑚混凝土配合比设计与粘结滑移性能研究[D]. 沈阳: 沈阳建筑大学, 2020.

    LI X Y. Mix design and bond-slip performance of sea sand coral concrete[D]. Shenyang: Shenyang Jianzhu University, 2020(in Chinese).
    [55] NIU D T, SU L, LUO Y, et al. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete[J]. Construction and Building Materials,2020,237:117628. doi: 10.1016/j.conbuildmat.2019.117628
    [56] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of FRP bars under direct pullout conditions[J]. Journal of Composites for Construction,2004(8):173-181.
    [57] DA B, YU H F, MA H Y, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials,2016,123:47-58. doi: 10.1016/j.conbuildmat.2016.06.135
    [58] TANG J W, CHENG H, ZHANG Q B, et al. Development of properties and microstructure of concrete with coral reef sand under sulphate attack and drying-wetting cycles[J]. Construction and Building Materials,2018,165:647-654. doi: 10.1016/j.conbuildmat.2018.01.085
    [59] CHENG S K, SHUI Z H, SUN T, et al. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete[J]. Applied Clay Science,2017,141:111-117. doi: 10.1016/j.clay.2017.02.026
    [60] CHENG S K, SHUI Z H, SUN T, et al. Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials[J]. Construction and Building Materials,2018,171:44-53. doi: 10.1016/j.conbuildmat.2018.03.082
    [61] HUANG D G, NIU D T, SU L, et al. Chloride diffusion behavior of coral aggregate concrete under drying-wetting cycles[J]. Construction and Building Materials,2021,270:121485. doi: 10.1016/j.conbuildmat.2020.121485
    [62] WANG L, SHEN N, ZHANG M M, et al. Bond performance of Steel-CFRP bar reinforced coral concrete beams[J]. Construction and Building Materials,2020,245:118456. doi: 10.1016/j.conbuildmat.2020.118456
    [63] YANG S T, YANG C, HUANG M L, et al. Study on bond performance between FRP bars and seawater coral aggregate concrete[J]. Construction and Building Materials,2018,173:272-288. doi: 10.1016/j.conbuildmat.2018.04.015
    [64] 王磊, 李威, 陈爽. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12):3458-3465.

    WANG L, LI W, CHEN S. Effects of seawater soaking on the bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3458-3465(in Chinese).
    [65] 李威. CFRP筋、GFRP筋-珊瑚混凝土在海水浸泡条件下的粘结性能试验研究[D]. 桂林: 桂林理工大学, 2018.

    LI W. Experimental study on bond behavior between CFRP bars and coral concrete specimens and GFRP bars and coral concrete specimens immersed in seawater[D]. Guilin: Guilin University of Technology, 2018(in Chinese).
    [66] LI Y, YIN S P, LU Y W, et al. Experimental investigation of the mechanical properties of BFRP bars in coral concrete under high temperature and humidity[J]. Construction and Building Materials,2020,259:120591. doi: 10.1016/j.conbuildmat.2020.120591
    [67] ELIGEHAUSEN R, POPOVEP, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations: Report No. 83[R]. Berkeley, California: Earthquake Engineering Research Center (EERC), University of California, 1983: 69-80.
    [68] COSENZA E, MANFREDI G, REALFONZO R. Bond characteristics and anchorage length of FRP rebars[C]//Advanced Composite Materials in Bridges and Structutrs. Montréal, Québec, Canada: Advanced Composite Materials in Bridges and Structutrs, 1996.
    [69] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [70] MALVAR L J. Bond stress-slip characteristics of FRP rebar: Report TR-2013-SHR[R]. Naval Facilities Engineering Service Center, Port Hueneme, California, 1994.
    [71] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003(7):41-43, 82. doi: 10.3321/j.issn:1000-8993.2003.07.011

    GAO D Y, ZHU H T, XIE J J. The constitutive models for bond slip relation between frp rebars and concrete[J]. Industrial Construction,2003(7):41-43, 82(in Chinese). doi: 10.3321/j.issn:1000-8993.2003.07.011
    [72] XU W Y, YANG S T, XU C J, et al. Study on fracture properties of alkali-activated slag seawater coral aggregate concrete[J]. Construction and Building Materials,2019,223:91-105. doi: 10.1016/j.conbuildmat.2019.06.191
    [73] 王林, 刘启超. GFRP筋-南海珊瑚砂混凝土受弯力学性能试验研究[J]. 城市建筑, 2020, 17(16):178-180.

    WANG L, LIU Q C. Research on flexural behavior experiment of GFRP bars-coral sand concrete of South China Sea Islands[J]. Urbanism and Architecture,2020,17(16):178-180(in Chinese).
    [74] LIU B, GUO J H, WEN X Y, et al. Study on flexural behavior of carbon fibers reinforced coral concrete using digital image correlation[J]. Construction and Building Materials,2020,242:117968. doi: 10.1016/j.conbuildmat.2019.117968
    [75] DONG Z Q, WU G, ZHU H, et al. Flexural behavior of seawater sea-sand coral concrete-UHPC composite beams reinforced with BFRP bars[J]. Construction and Building Materials,2020,265:120279. doi: 10.1016/j.conbuildmat.2020.120279
    [76] WANG X, SHI J Z, DING L N, et al. Durability of coral-reef-sand concrete beams reinforced with basalt fiber-reinforced polymer bars in seawater[J]. Advances in Structural Engineering,2021,24(4):136943322098166.
    [77] American Concrete Institute. Guide for the design and construction of concrete reinforced with FRP bars: ACI 440. 1R—15[S]. Farmington Hills, MI, USA: American Concrete Institute, 2015.
    [78] 刘霞, 李峰, 佘殷鹏. 玄武岩纤维增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10):2428-2438.

    LIU X, LI F, YU D P. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column[J]. Acta Materiae Compositae Sinica,2020,37(10):2428-2438(in Chinese).
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  880
  • HTML全文浏览量:  298
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 修回日期:  2021-08-24
  • 录用日期:  2021-08-24
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回