留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/高分子功能复合材料制备与应用研究进展

朱世东 赵乾臻 王星海 李金灵 戚东涛 孔鲁诗

朱世东, 赵乾臻, 王星海, 等. 石墨烯/高分子功能复合材料制备与应用研究进展[J]. 复合材料学报, 2022, 39(2): 489-501. doi: 10.13801/j.cnki.fhclxb.20210713.001
引用本文: 朱世东, 赵乾臻, 王星海, 等. 石墨烯/高分子功能复合材料制备与应用研究进展[J]. 复合材料学报, 2022, 39(2): 489-501. doi: 10.13801/j.cnki.fhclxb.20210713.001
ZHU Shidong, ZHAO Qianzhen, WANG Xinghai, et al. Research progress in preparation and application of graphene/polymer functional composite materials[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 489-501. doi: 10.13801/j.cnki.fhclxb.20210713.001
Citation: ZHU Shidong, ZHAO Qianzhen, WANG Xinghai, et al. Research progress in preparation and application of graphene/polymer functional composite materials[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 489-501. doi: 10.13801/j.cnki.fhclxb.20210713.001

石墨烯/高分子功能复合材料制备与应用研究进展

doi: 10.13801/j.cnki.fhclxb.20210713.001
基金项目: 国家自然科学基金(51974245;21808182);陕西省重点研发项目(2020GY234);西安市科技计划项目(2020KJRC0097;2020KJRC0098);研究生创新与实践能力培养计划立项项目(YCS20113059)
详细信息
    通讯作者:

    朱世东,博士,副教授,硕士生导师,研究方向为新材料的研制 E-mail:zhusdxt@126.com

  • 中图分类号: TB332;O613

Research progress in preparation and application of graphene/polymer functional composite materials

  • 摘要: 新型无机纳米材料与传统聚合物分子结合将极大地促进石墨烯的多功能性、高补强性与高分子的良好力学性、成熟工艺得以充分展现。本文简述了功能材料、纳米石墨烯、高分子的发展历程,分别对吸附材料的高分子来源(三种天然高分子、合成高分子)、催化材料在(合成、电)化学反应中的应用、分离材料的孔径特性(低渗透、纳滤、超滤、微滤)、生物医用材料的用途(组织工程、医用卫生、医用药材)进行了剖析,重点详述了多种石墨烯/高分子功能复合材料功能与效能,并对其制备方式与效能提高原因进行了简析,同时对导电材料、智能(或传导)材料及磁性材料和液晶材料等进行了概述,以期为新型石墨烯/高分子功能复合材料的研制与应用提供借鉴。最后,对石墨烯/高分子功能复合材料在普及率和工业化上存在的问题等进行了思考,并做出了展望。

     

  • 图  1  构建3D氧化石墨烯生物聚合物凝胶的方法(a)、氧化石墨烯浓缩液(左)和氧化石墨烯生物聚合物凝胶照片(b)、GO在新劈裂的云母上的AFM图像(c)、冻干氧化石墨烯海绵(d)、氧化石墨烯-BSA凝胶(e)、氧化石墨烯-CS凝胶(f)、氧化石墨烯-DNA凝胶(g)的FE-SEM图像[28]

    Figure  1.  Approach for constructing the 3D GO-biopolymers gel (a), photograph of GO concentrated solution (left) and GO-biopolymer gels (b), AFM image for GO on freshly cleaved mica (c), FE-SEM images of the lyophilized GO sponge (d), GO-BSA gel (e), GO-CS gel (f) and GO-DNA gel (g)[28]

    图  2  典型柔性有机太阳能电池(FOSC)结构、能带与弯曲循环性能[85]

    Figure  2.  Structure, band, bending cycle properties of flexible organic solar cell (FOSC)[85]

    P3HT : PCBM—Poly 3-hexylthiophene : [6,6]-phenyl-C61-butyric acid methyl ester; TFSA-GR—Bis(trifluoromethanesulfonyl) amides doped graphene; GQDs—Graphene quantum dots; PCE—Power conversion efficiency

  • [1] MORTON J A. From physics to function[J]. IEEE Spectrum, 1965, 2(9): 62-66.
    [2] 郝应其. 功能材料在航空中的地位[J]. 材料工程, 1987(3):27-32, 38.

    HAO Y Q. The position of functional materials in aviation[J]. Journal of Materials Engineering,1987(3):27-32, 38(in Chinese).
    [3] 周寿增, 王润. 功能材料的发展[J]. 仪表材料, 1990, 21(4):193-200, 261.

    ZHOU S Z, WANG R. Development of functional materials[J]. Instrument Material,1990,21(4):193-200, 261(in Chinese).
    [4] PENKOV O V, KIM H J, KIM H J, et al. Tribology of graphene: A review[J]. International Journal of Precision Engineering and Manufacturing,2014,15:577-585. doi: 10.1007/s12541-014-0373-2
    [5] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.
    [6] YANG E H, DATTA D, DING J J, et al. Synthesis, modeling, and characterization of 2D materials, and their heterostructures[M]. Amsterdam: Elsevier, 2020: 181-221.
    [7] AL-GAASHANI R, ZAKARIA Y, LEE O S, et al. Effects of preparation temperature on production of graphene oxide by novel chemical processing[J]. Ceramics International, 2021, 47(7): 10113-10122.
    [8] GÉSSICA SEARA F, ANDREZA MENEZES L, LUIZ PAULO B, et al. Production and characterization of graphene oxide and reduced graphene oxide with different oxidation times[J]. Materia-Rio de Janeiro,2017,22(1):11918.
    [9] 李靖宇, 金正宇, 赵海超. 石墨烯表面改性研究进展[J]. 材料科学, 2019, 9(4):379-391. doi: 10.12677/MS.2019.94050

    LI J Y, JIN Z Y, ZHAO H C. Research progress on surface modification of graphene[J]. Material Sciences,2019,9(4):379-391(in Chinese). doi: 10.12677/MS.2019.94050
    [10] TIAN J, WU S, YIN X L, et al. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode[J]. Applied Surface Science,2019,496:143696. doi: 10.1016/j.apsusc.2019.143696
    [11] SU J, ZHANG X, TONG X L, et al. Preparation of graphene quantum dots with high quantum yield by a facile one-step method and applications for cell imaging[J]. Materials Letters,2020,271:127806. doi: 10.1016/j.matlet.2020.127806
    [12] 牛超群, 徐宇曦. 二维高分子的制备、组装及其高效电化学应用[J]. 高分子学报, 2021, 52(6):1-16.

    NIU C Q, XU Y X. Two-dimensional polymers: Preparation, assembly and high-efficiency electrochemical applications[J]. Acta Polymerica Sinica,2021,52(6):1-16(in Chinese).
    [13] DONG Y N, HE Y Z, WANG Y, et al. A theoretical study of ripple propagation in defective graphene[J]. Carbon,2014,68:742-747. doi: 10.1016/j.carbon.2013.11.060
    [14] SHI Q, GAO H Q, ZHANG Y D, et al. Bilayer graphene with ripples for reverse osmosis desalination[J]. Carbon,2018,136:21-27. doi: 10.1016/j.carbon.2018.04.053
    [15] MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheets[J]. Nature,2007,446:60-63. doi: 10.1038/nature05545
    [16] CHEN P Y, SODHI J, Qiu Y, et al. Multiscale graphene topographies programmed by sequential mechanical deformation[J]. Advanced Materials,2016,28(18):3564-3571. doi: 10.1002/adma.201506194
    [17] BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural defects in graphene[J]. ACS Nano,2011,5:26-41. doi: 10.1021/nn102598m
    [18] HONG J H, JIN C H, YUAN J, et al. Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis[J]. Advanced Materials,2019,29(14):1606434.
    [19] 冯新德. 谈谈功能高分子[J]. 化学通报, 1982(9):17-18.

    FENG X D. On functional polymers[J]. Chemistry Bulletin,1982(9):17-18(in Chinese).
    [20] 王若新. 我国功能高分子材料发展现状及应用分析[J]. 化工设计通讯, 2020, 46(3):93-102. doi: 10.3969/j.issn.1003-6490.2020.03.064

    WANG R X. Development status and application analysis of functional polymer materials in China[J]. Chemical Engineering Design Communications,2020,46(3):93-102(in Chinese). doi: 10.3969/j.issn.1003-6490.2020.03.064
    [21] AL-HAMADANI Y A J, LEE G, KIM S, et al. Sonocatalytic degradation of carbamazepine and diclofenac in the presence of graphene oxides in aqueous solution[J]. Chemosphere,2018,205:719-727. doi: 10.1016/j.chemosphere.2018.04.129
    [22] CARRALES-ALVARADO D H, RODRÍGUEZ-RAMOS I, LEYVA-RAMOS R, et al. Effect of surface area and physical-chemical properties of graphite and graphene-based materials on their adsorption capacity towards metronidazole and trimethoprim antibiotics in aqueous solution[J]. Chemical Engineering Journal,2020,402:126155. doi: 10.1016/j.cej.2020.126155
    [23] 张文博, 李思纯, 马建中, 等. 氧化石墨烯/天然高分子复合吸附材料在水处理中的应用[J]. 精细化工, 2021, 38(4):683-693.

    ZHANG W B, LI S C, MA J Z, et al. Application of graphene oxide/natural polymer composite adsorbents in water treatment[J]. Fine Chemicals,2021,38(4):683-693(in Chinese).
    [24] SANNA H, AMIT B, MIKA S. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity[J]. Water Research,2016,91:156-173. doi: 10.1016/j.watres.2016.01.008
    [25] ZHOU L J, XU Z Y. Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents[J]. Journal of Hazardous Materials,2020,388:121804. doi: 10.1016/j.jhazmat.2019.121804
    [26] ZAMAN A, ORASUGH J T, BANERJEE P, et al. Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions[J]. Carbohydrate Polymers,2020,246:116661. doi: 10.1016/j.carbpol.2020.116661
    [27] 段久芳. 天然高分子材料[M]. 武汉: 华中科技大学出版社, 2016: 179-185.

    DUAN J F. Natural polymer materials[M]. Wuhan: Huazhong University of Science and Technology Press, 2016: 179-185(in Chinese).
    [28] 雷蓓, 何蔼, 程冲, 等. 三维生物高分子/氧化石墨烯复合凝胶对阳离子染料吸附的研究[J]. 高分子学报, 2014(3):341-349.

    LEI B, HE A, CHENG C, et al. Adsorption of cationic dyes by biopolymers mediated graphene oxide gels[J]. Acta Polymerica Sinica,2014(3):341-349(in Chinese).
    [29] SHEN J W, LI J C, DAI J H, et al. Molecular dynamics study on the adsorption and release of doxorubicin by chitosan-decorated graphene[J]. Carbohydrate Polymers,2020,248:116809. doi: 10.1016/j.carbpol.2020.116809
    [30] 顾其胜, 王帅帅, 王庆生, 等. 海藻酸盐敷料应用现状与研究进展[J]. 中国修复重建外科杂志, 2014, 28(2):255-258.

    GU Q S, WANG S S, WANG Q S, et al. Application status and research progress of alginate dressings[J]. Chinese Journal of Reparative and Reconstructive Surgery,2014,28(2):255-258(in Chinese).
    [31] TAO E, MA D, YANG S Y, et al. Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater[J]. Journal of Alloys and Compounds,2020,832:154833. doi: 10.1016/j.jallcom.2020.154833
    [32] LIU H Y, PAN B L, WANG Q J, et al. Crucial roles of graphene oxide in preparing alginate/nanofibrillated cellulose double network composites hydrogels[J]. Chemosphere,2021,263:128240. doi: 10.1016/j.chemosphere.2020.128240
    [33] 赵文元. 功能高分子材料[M]. 北京: 化学工业出版社, 2008: 1-2.

    ZHAO W Y. Functional polymer materials[M]. Peking: Chemical Industry Press, 2008: 1-2(in Chinese).
    [34] ORIBAYO O, FENG X S, REMPEL G L, et al. Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery[J]. Chemical Engineering Journal,2017,323:191-202. doi: 10.1016/j.cej.2017.04.054
    [35] MASSOUD A, FARID O M, MAREE R M, et al. An improved metal cation capture on polymer with graphene oxide synthesized by gamma radiation[J]. Reactive and Functional Polymers,2020,151:104564. doi: 10.1016/j.reactfunctpolym.2020.104564
    [36] XUE D S, LI T, LIU Y H. Selective adsorption and recovery of precious metal ions from water and metallurgical slag by polymer brush graphene-polyurethane composite[J]. Reactive and Functional Polymers,2019,136:138-152. doi: 10.1016/j.reactfunctpolym.2018.12.026
    [37] YANG G, SONG N, DENG F J, et al. Direct surface functionalization of graphene oxide with ionic liquid through gamma ray irradiation induced radical polymerization with remarkable enhanced adsorption capacity[J]. Journal of Molecular Liquids,2020,306:112877. doi: 10.1016/j.molliq.2020.112877
    [38] ŞEN B, AYGÜn A, ŞAVK A, et al. Polymer-graphene hybrid stabilized ruthenium nanocatalysts for the dimethylamine-borane dehydrogenation at ambient conditions[J]. Journal of Molecular Liquids,2019,279:578-583. doi: 10.1016/j.molliq.2019.02.003
    [39] KARABOG S, ÖZKAR S. Nanoalumina supported palladium(0) nanoparticle catalyst for releasing H2 from dimethylamine borane[J]. Applied Surface Science,2019,487:433-441. doi: 10.1016/j.apsusc.2019.05.087
    [40] KWON T H, CHO K Y, BAEK K Y, et al. Recyclable palladium-graphene nanocomposite catalysts containing ionic polymers: Efficient suzuki coupling reactions[J]. RSC Advances,2017,7:11684-11690. doi: 10.1039/C6RA26998B
    [41] 朱劼, 李丹丁, 雪洁, 等. 温敏高分子修饰氧化石墨烯负载钌催化剂的制备及选择加氢活性[J]. 常州大学学报(自然科学版), 2019, 31(6):1-10.

    ZHU J, LI D D, XUE J, et al. A Ru catalyst supported on temperature-sensitive polymer grafted graphene oxide and its catalytic activity in selective hydrogenation activity[J]. Journal of Changzhou University (Natural Science Edition),2019,31(6):1-10(in Chinese).
    [42] 夏前芳, 黄颖娟, 杨雪, 等. 新型石墨烯/金/功能导电高分子/过氧化氢生物传感器的制备及应用[J]. 化学学报, 2012, 70(11):1315-1321. doi: 10.6023/A1111012

    XIA Q F, HUANG Y J, YANG X, et al. Preparation and its application of novel graphene/gold/functional conducting polymer/hydrogen peroxide biosensor[J]. Acta Chimica Sinica,2012,70(11):1315-1321(in Chinese). doi: 10.6023/A1111012
    [43] LIU S, TIAN J Q, WANG L, et al. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection[J]. Carbon,2011,49(10):3158-3164. doi: 10.1016/j.carbon.2011.03.036
    [44] 蒋丰兴. 新型碳复合材料负载贵金属纳米粒子催化剂的制备及其电催化性能研究[D]. 苏州: 苏州大学, 2013: 90-106.

    JIANG F X. Preparation and characterization of new carbon composites supported precious metal nanoparticles catalysts and their electrocatalytic properties[D]. Suzhou: Soochow University, 2013: 90-106(in Chinese).
    [45] SANER B, GÜRSEL S A, YÜRÜM Y. Layer-by-layer polypyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells[J]. Fullerenes, Nanotubes and Carbon Nanostructures,2013,21(3):233-247. doi: 10.1080/1536383X.2011.613536
    [46] 沈悦啸, 王利政, 莫颖慧, 等. 微滤、超滤、纳滤和反渗透技术的最新进展[J]. 中国给水排水, 2010, 26(22):1-5.

    SHEN Y X, WANG L Z, MO Y H, et al. State-of-art of microfiltration, ultrafiltration, nanofiltration and reverse osmosis technologie[J]. China Water & Waste Water,2010,26(22):1-5(in Chinese).
    [47] CAMACHO L M, PINION T A, OLATUNJI O O. Behavior of mixed-matrix graphene oxide-Polysulfone membranes in the process of direct contact membrane distillation[J]. Separation and Purification Technology,2020,240:116645. doi: 10.1016/j.seppur.2020.116645
    [48] ASHFAQ M Y, AL-GHOUTI M A, NABIL Z. Functionalization of reverse osmosis membrane with graphene oxide and polyacrylic acid to control biofouling and mineral scaling[J]. Science of the Total Environment,2020,736:139500. doi: 10.1016/j.scitotenv.2020.139500
    [49] NAM Y T, KIM S T, KANG K M, et al. Enhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supports[J]. Carbon,2019,148:370-377. doi: 10.1016/j.carbon.2019.03.090
    [50] XU P, HONG J, QIAN X M, et al. “Bridge” graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation[J]. Desalination,2020,488:114522. doi: 10.1016/j.desal.2020.114522
    [51] KANG X, LIU X, LIU J H, et al. Spin-assisted interfacial polymerization strategy for graphene oxide-polyamide composite nanofiltration membrane with high performance[J]. Applied Surface Science,2020,508:145198. doi: 10.1016/j.apsusc.2019.145198
    [52] 黄露露, 张艳玲, 王挺, 等. 弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建[J]. 复合材料学报, 2020, 37(11):2749-2759.

    HUANG L L, ZHANG Y L, WANG T, et al. Fabrication of polyvinylidene fluoride blending membranes filled by La-TiO2-reduced graphene oxide with photocatalytic activity[J]. Acta Materiae Compositae Sinica,2020,37(11):2749-2759(in Chinese).
    [53] MA C, HU J, SUN W J, et al. Graphene oxide-polyethylene glycol incorporated PVDF nanocoposite ultrafiltration membrane with enhanced hydrophilicity, permeability, and antifouling performance[J]. Chemosphere,2020,253:126649. doi: 10.1016/j.chemosphere.2020.126649
    [54] 杨文秀, 刘冬冬, 胡雪敏. GO/PI复合纳米纤维的制备及其过滤性能研究[J]. 上海纺织科技, 2020, 48(3):26-28, 45.

    YANG W X, LIU D D, HU X M. Preparation and filtration properties of GO/PI composite nanofibers[J]. Shanghai Textile Science & Technology,2020,48(3):26-28, 45(in Chinese).
    [55] 关莹, 饶俊, 吴玉乐, 等. 羧甲基半纤维素/壳聚糖/氧化石墨烯复合膜的制备及性能研究[J]. 林产化学与工业, 2019, 39(6):13-20.

    GUAN Y, RAO J, WU Y L, et al. Preparation and characterization of carboxymethyl hemicelluloses/chitosan/graphene oxide composite film[J]. Chemistry and Industry of Forest Products,2019,39(6):13-20(in Chinese).
    [56] 颜鼎荷, 肖长发, 陈明星, 等. 增强型管状聚偏氟乙烯/石墨烯纳米纤维膜制备与性能[J]. 高分子材料科学与工程, 2020, 36(4):112-118, 127.

    YAN D H, XIAO C F, CHEN M X, et al. Preparation and properties of tubular reinforced polyvinylidene fluoride/graphene nanofiber membranes[J]. Polymer Materials Science and Engineering,2020,36(4):112-118, 127(in Chinese).
    [57] JI J, LIU F, AWANIS H N, et al. Poly(vinylidene fluoride) (PVDF) membranes for fluid separation[J]. Reactive and Functional Polymers,2015,86:134-153. doi: 10.1016/j.reactfunctpolym.2014.09.023
    [58] 王景昌, 田羽竹, 王卫京, 等. 功能化生物医用材料的研究进展[J]. 塑料科技, 2019, 47(10):148-153.

    WANG J C, TIAN Y Z, WANG W J, et al. Research progress of functional biomedical materials[J]. Plastics Science and Technology,2019,47(10):148-153(in Chinese).
    [59] 陈学思. 蓬勃发展的中国生物医用材料[J]. 科学通报, 2021, 66(18): 2215-2216.

    CHEN X S. Flourishing research in Chinese biomedical materials[J]. Chinese Science Bulletin, 2021, 66(18): 2215-2216(in Chinese).
    [60] OLAD A, HAGH H B K. Graphene oxide and amin-modified graphene oxide incorporated chitosan-gelatin scaffolds as promising materials for tissue engineering[J]. Composites Part B: Engineering,2019,162:692-702. doi: 10.1016/j.compositesb.2019.01.040
    [61] SHUAI C J, XU Y, FENG P, et al. Hybridization of graphene oxide and mesoporous bioactive glass: Micro-space network structure enhance polymer scaffold[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,109:103827. doi: 10.1016/j.jmbbm.2020.103827
    [62] HAGLUND L, AHANGAR P, ROSENZWEIG D H. Advancements in 3D printed scaffolds to mimic matrix complexities for musculoskeletal repair[J]. Current Opinion in Biomedical Engineering,2019,10:142-148. doi: 10.1016/j.cobme.2019.06.002
    [63] CHIESA E, DORATI R, PISANI S, et al. Graphene Nanoplatelets for the development of reinforced PLA-PCL electrospun fibers as the next-generation of biomedical mats[J]. Polymers,2020,12(6):1390. doi: 10.3390/polym12061390
    [64] 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386.

    FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese).
    [65] 张亚芳, 徐伯俊, 苏旭中, 等. 生物质石墨烯锦纶/涤纶抑菌纺织品开发与性能[J]. 丝绸, 2019, 56(4):56-62.

    ZHANG Y F, XU B J, SU X Z, et al. Development and performance of biomass graphene nylon /polyester antibacterial textiles[J]. Journal of Silk,2019,56(4):56-62(in Chinese).
    [66] 周福芹, 张志斌, 杨海峰. 石墨烯改性棉织物的制备及其抗紫外/抗菌性能[J]. 印染助剂, 2019, 36(11):16-19. doi: 10.3969/j.issn.1004-0439.2019.11.004

    ZHOU F Q, ZHANG Z B, YANG H F. Preparation of graphene modified cotton fabric and its UV and antibacterial properties[J]. Textile Auxiliaries,2019,36(11):16-19(in Chinese). doi: 10.3969/j.issn.1004-0439.2019.11.004
    [67] KUMAR D, BABU G, KRISHNAN S. Study on mechanical & thermal properties of PCL blended graphene biocomposites[J]. Polimeros,2019,29(2):1-9.
    [68] MAKVANDI P, GHOMI M, ASHRAFIZADEH M, et al. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity[J]. Carbohydrate Polymers,2020,250:116952. doi: 10.1016/j.carbpol.2020.116952
    [69] ROY S, JAISWAL A. DNA binding and NIR triggered DNA release from quaternary ammonium modified poly(allylamine hydrochloride) functionalized and folic acid conjugated reduced graphene oxide nanocomposites[J]. International Journal of Biological Macromolecules,2020,153:931-941. doi: 10.1016/j.ijbiomac.2020.02.216
    [70] HAVANUR S, BATISH I, CHERUKU S P, et al. Poly(N, N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice[J]. Materials Science and Engineering: C,2019,105:110094. doi: 10.1016/j.msec.2019.110094
    [71] TAGHIZADEH A, TAGHIZADEH M, JOUYANDEH M, et al. Conductive polymers in water treatment: A review[J]. Journal of Molecular Liquids,2020,312:113447. doi: 10.1016/j.molliq.2020.113447
    [72] BAE J, PARK J Y, KWON O S, et al. Energy efficient capacitors based on graphene/conducting polymer hybrids[J]. Journal of Industrial and Engineering Chemistry,2017,51:1-11. doi: 10.1016/j.jiec.2017.02.023
    [73] MOHAN V B, KREBS B J, BHATTACHARYYA D. Development of novel highly conductive 3D printable hybrid polymer-graphene composites[J]. Materials Today Communications,2018,17:554-561. doi: 10.1016/j.mtcomm.2018.09.023
    [74] NEZAKATI T, TAN A, LIM J, et al. Ultra-low percolation threshold POSS-PCL/graphene electrically conductive polymer: Neural tissue engineering nanocomposites for neurosurgery[J]. Materials Science and Engineering: C,2019,104:109915. doi: 10.1016/j.msec.2019.109915
    [75] CHEN Y, BAI J G, YANG D Y, et al. Excellent performance of flexible supercapacitor based on the ternary composites of reduced graphene oxide/molybdenum disulfide/poly (3, 4-ethylenedioxythiophene)[J]. Electrochimica Acta,2020,330:135205. doi: 10.1016/j.electacta.2019.135205
    [76] 刘栋. 聚苯胺修饰的碳基柔性自支撑超级电容器电极材料的制备及其电化学性能研究[D]. 兰州: 兰州大学, 2019: 94-104.

    LIU D. Preparation and electrochemical properties of polyaniline decorated carbon based flexible free-standing supercapacitor electrodes[D]. Lanzhou: Lanzhou University, 2019: 94-104(in Chinese).
    [77] ZHENG C X, LU K Y, LU Y, et al. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion[J]. Carbohydrate Polymers,2020,250:116905. doi: 10.1016/j.carbpol.2020.116905
    [78] 张新民. 智能材料研究进展[J]. 玻璃钢/复合材料, 2013(6):57-62.

    ZHANG X M. The research process of smart materials[J]. Fiber Reinforced Plastics/Composites,2013(6):57-62(in Chinese).
    [79] 苏彦宁, 白玮, 王菲, 等. 溶剂响应智能材料的研究进展[J]. 化工新型材料, 2021, 49(5): 23-27.

    SU Y N, BAI W, WANG F, et al. Research progress of solvent stimulus materials[J]. New Chemical Materials, 2021, 49(5): 23-27(in Chinese).
    [80] KEARNS D, CALVIN M. Photovoltaic effect and photoconductivity in laminated organic systems[J]. The Journal of Chemical Physics. 1958, 29(4): 950-951.
    [81] SHI Tongchao, ZHANG Zeyu, GUO Xia, et al. Ultrafast charge generation enhancement in nanoscale polymer solar cells with DIO additive[J]. Nanomaterials,2020,10:2174. doi: 10.3390/nano10112174
    [82] TABITHA A A, GENENE T M, VINCENT O N. Organic solar cells: Materials and prospects of graphene for active and interfacial layers[J]. Critical Reviews in Solid State and Materials Sciences, 2020, 45(4): 261-288.
    [83] PAN F, BAI S, WEI X, et al. 3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells[J]. Science China Materials,2021,64(2):277-287. doi: 10.1007/s40843-020-1401-2
    [84] 李平, 陆亚利, 梁倩倩. 石墨烯及其衍生物在有机太阳能电池中的应用进展[J]. 化工新型材料, 2020, 48(S1):4-9.

    LI P, LU Y L, LIANG Q Q. Application progress of graphene and its derivative in organic solar cell[J]. New Chemical Materials,2020,48(S1):4-9(in Chinese).
    [85] SHIN D H, JANG C W, SUN K J, et al. Enhancement of efficiency and stability in organic solar cells by employing MoS2 transport layer, graphene electrode, and graphene quantum dots-added active layer[J]. Applied Surface Science,2021,538:148155. doi: 10.1016/j.apsusc.2020.148155
    [86] KOO D, JUNG S, SEO J, et al. Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes[J]. Joule,2020,4(5):1021-1034. doi: 10.1016/j.joule.2020.02.012
    [87] 林珊, 史永堂, 王盈盈, 等. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(6):1938-1945.

    LIN S, SHI Y T, WANG Y Y, et al. Enhancing the performance of organic solar cells by introducing graphene-based hole transfer layer[J]. Materials Reports,2019,33(6):1938-1945(in Chinese).
    [88] ROUGET M C. Amylaceous substances in animal tis-sues, especially articulated (chitin) [J]. Compte Rendus, 1859, 48: 792-795 (in French).
    [89] 王静, 刘红科, 刘平生, 等. 高强度水凝胶纳米复合材料的研究进展[J]. 材料导报, 2018, 32(1):67-75. doi: 10.11896/j.issn.1005-023X.2018.01.008

    WANG J, LIU H K, LIU P S, et al. Advances in hydrogel nanocomposites with high mechanical strength[J]. Materials Review,2018,32(1):67-75(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.01.008
    [90] LEI Y, ZHANG G, LI H. Thermal-responsive nanocomposite hydrogel based on graphene oxide-polyvinyl alcohol/ poly (n-isopropylacrylamide)[C]. Materials Science and Engineering Conference Series, 2017, 274(1): 012115.
    [91] 向远方. 温敏性石墨烯及其复合材料的制备与研究[D]. 长沙: 湖南大学, 2019: 13-41.

    XIANG Y F. Preparation and study of thermo-sensitive graphene and its composites[D]. Changsha: Hunan University, 2019: 13-41(in Chinese).
    [92] YUE J N, HE L L, TANG Y Z, et al. Facile design and development of photoluminescent graphene quantum dots grafted dextran/glycol-polymeric hydrogel for thermoresponsive triggered delivery of buprenorphine on pain management in tissue implantation[J]. Journal of Photochemistry and Photobiology B: Biology,2019,197:111530. doi: 10.1016/j.jphotobiol.2019.111530
    [93] 李栋辉, 江学良, 李菁瑞, 等. 石墨烯/聚氯乙烯/聚氨酯层状结构材料的制备及其声学特性研究[J]. 胶体与聚合物, 2018, 36(2):51-54.

    LI D H, JIANG X L, LI Q R. Preparation and acoustic properties of graphene/poly(vinyl chloride)/polyurethane sandwich layered structural materials[J]. Chinese Journal of Colloid & Polymer,2018,36(2):51-54(in Chinese).
    [94] 李莹. 基于石墨烯纳米复合材料及超结构的电磁屏蔽和声学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 87-106.

    LI Y. Study on electromagnetic shielding and acoustic performance of graphene-based nanocomposites and metastructures[D]. Harbin: Harbin Institute of Technology, 2019: 87-106(in Chinese).
    [95] SIMÓN-HERRERO C, PECO N, ROMERO A, et al. PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties[J]. Applied Acoustics,2019,156:40-45. doi: 10.1016/j.apacoust.2019.06.023
    [96] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [97] 马良, 陈楷炫, 莫冬传, 等. 石墨烯导热高分子复合材料的制备、性能与机理[J]. 化工学报, 2017, 68(S1):18-26.

    MA L, CHEN K X, MO D C, et al. Preparation, properties and mechnism of thermal conductive grphene/polymer composites[J]. Journal of Chemical Industry and Engineering (China),2017,68(S1):18-26(in Chinese).
    [98] 周文英, 王蕴, 曹国政, 等. 本征导热高分子复合材料研究进展[J]. 复合材料学报, 2021, 38(7):2038-2055. doi: 10.13801/j.cnki.fhclxb.20210312.001

    ZHOU W Y, WANG Y, CAO G Z, et al. Progress in the intrinsic thermally conductive polumer composites[J]. Acta Materiae Compositae Sinica,2021,38(7):2038-2055(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210312.001
    [99] 刘镇, 史建中, 李茜. 磁性氧化石墨烯材料富集-快检卡对鸡肉中四环素类药物的检测方法研究[J]. 医学动物防制, 2020, 36(2):199-202.

    LIU Z, SHI J Z, LI Q. Study on the detection method of tetracycline drugs in chicken meat by magnetic graphene oxide material enrichment-quick check card[J]. Journal of Medical Pest Control,2020,36(2):199-202(in Chinese).
    [100] HONG S Y, YE CHAN K, WANG M, et al. Anisotropic electromagnetic interference shielding properties of polymer-based composites with magnetically-responsive aligned Fe3O4 decorated reduced graphene oxide[J]. European Polymer Journal,2020,127:109595. doi: 10.1016/j.eurpolymj.2020.109595
    [101] 弓子伟, 王公正, 王娇娇, 等. 磁性氧化石墨烯高分子复合微球的制备及对染料吸附性能的研究[J]. 西北大学学报(自然科学版), 2018, 48(3):385-392.

    GONG Z W, WANG G Z, WANG J J, et al. Preparation of magnetic graphene oxide polymer composite microspheres and the adsorption dyes properties[J]. Journal of Northwest University (Natural Science Edition),2018,48(3):385-392(in Chinese).
    [102] 杨绍斌, 籍遥函, 沈丁. 氧化石墨烯液晶相结构的调控及应用进展[J]. 化工进展, 2019, 38(3):1443-1451.

    YANG S B, JI Y H, SHEN D. Phase structure control and applications of graphene oxide liquid crystals[J]. Chemical Industry and Engineering Progress,2019,38(3):1443-1451(in Chinese).
    [103] ZHANG L S, PAN J K, LIU Y H, et al. NIR-UV responsive actuator with graphene oxide/microchannel-induced liquid crystal bilayer structure for biomimetic devices[J]. ACS Applied Materials & Interfaces,2020,12(5):6727-6735.
    [104] 李静, 郑世军, 许群. 超临界二氧化碳诱导的液晶高分子在氧化石墨烯上的聚集及其荧光表现[C]//2014年两岸三地高分子液晶态与超分子有序结构学术研讨会摘要集. 2014: 175-176.

    LI J, ZHENG S J, XU Q. Aggregation and fluorescence of liquid crystalline polymers on graphene oxide induced by supercritical carbon dioxide[C]//Abstract set of 2014 symposium on liquid crystalline state and supramolecular ordered structure of polymers in three places of two sides. 2014: 175-176(in Chinese).
  • 加载中
图(2)
计量
  • 文章访问数:  3805
  • HTML全文浏览量:  609
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-06-19
  • 录用日期:  2021-07-05
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回