留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-NiO/N-C的制备及其电解水析氢性能

吴诗德 张桂伟 黄思光 易峰 平丹 方少明

吴诗德, 张桂伟, 黄思光, 等. Ni-NiO/N-C的制备及其电解水析氢性能[J]. 复合材料学报, 2022, 39(4): 1667-1677. doi: 10.13801/j.cnki.fhclxb.20210617.004
引用本文: 吴诗德, 张桂伟, 黄思光, 等. Ni-NiO/N-C的制备及其电解水析氢性能[J]. 复合材料学报, 2022, 39(4): 1667-1677. doi: 10.13801/j.cnki.fhclxb.20210617.004
WU Shide, ZHANG Guiwei, HUANG Siguang, et al. Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1667-1677. doi: 10.13801/j.cnki.fhclxb.20210617.004
Citation: WU Shide, ZHANG Guiwei, HUANG Siguang, et al. Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1667-1677. doi: 10.13801/j.cnki.fhclxb.20210617.004

Ni-NiO/N-C的制备及其电解水析氢性能

doi: 10.13801/j.cnki.fhclxb.20210617.004
基金项目: 郑州轻工业大学星空众创空间孵化项目(2020ZCKJ218);河南省自然科学基金(212300410299);国家自然科学基金-河南联合基金重点项目(U1704256)
详细信息
    通讯作者:

    平丹,博士,讲师,硕士生导师,研究方向为电催化反应、复合功能材料 E-mail:danping@zzuli.edu.cn

  • 中图分类号: TB331

Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen

  • 摘要: 电催化分解水制氢(HER)被认为是最具应用前景的能量转换方式之一,可同时获得高纯度氢气并实现能量储存与转化,其关键在于低廉、高效且高稳定HER电催化剂的设计与开发。采用一步水热法得到羟基氧化镍/聚苯胺(NiOOH/PANI)催化剂前驱体,经800℃热解后制备出Ni-NiO/N-C负载型电催化剂,并考察其HER性能。采用XRD、SEM、TEM、BET、XPS和Raman等手段对催化剂的物理化学属性进行表征,结果表明催化剂主要呈现出均匀的碳纳米片状堆积结构,Ni和NiO同时存在且均匀分布在载体N-C表面。电化学性能测试结果表明该催化剂的催化性能与催化剂中金属Ni的相对含量密切相关,当前驱体中苯胺添加量为0.6 mL时,所得催化剂Ni-NiO/N-C-0.6上金属Ni相对含量最高,电催化性能最好,在电流密度为10 mA·cm−2时过电位仅为168 mV,且连续工作16 h或经历1000次循环伏安测试后,催化活性基本不变,展现出优异的催化稳定性,具有广阔的应用前景。

     

  • 图  1  Ni-NiO/N-C催化剂前驱体(a)和催化剂样品的XRD图谱 (b)

    Figure  1.  XRD patterns of prepared Ni-NiO/N-C catalyst precursors (a) and catalysts (b)

    图  2  NiOOH/PANI-0.6 (a)、Ni-NiO/N-C-0.6 (b) 的FESEM图像,Ni-NiO/N-C-0.6催化剂的元素分布图 ((c)~(g)),Ni-NiO/N-C-0.6的HRTEM (h) 和选取电子衍射(SAED) (i) 图像

    Figure  2.  FESEM images of NiOOH/PANI-0.6 (a), Ni-NiO/N-C-0.6 (b), elemental mapping images ((c)-(g)), HRTEM (h) and selected area electron diffraction (SAED) (i) images of Ni-NiO/N-C-0.6

    图  3  Ni-NiO/N-C催化剂的拉曼光谱图

    Figure  3.  Raman spectra of the prepared Ni-NiO/N-C catalysts

    ID/IG—Intensity ratio of peak D to peak G

    图  4  Ni-NiO/N-C催化剂的N2吸/脱附曲线图(a)和对应的孔径分布图(b)

    Figure  4.  N2 adsorption/desorption curves (a) and the corresponding pore size distributions (b) of the prepared Ni-NiO/N-C catalysts

    图  5  Ni-NiO/N-C催化剂样品的全谱 (a)、Ni2p3/2 (b)、N1s (c) 和C1s (d) 的XPS光谱图

    Figure  5.  XPS spectra of survey spectra (a), Ni2p3/2 (b),N1s (c) and C1s (d) for Ni-NiO/N-C catalyst samples

    图  6  Ni-NiO/N-C催化剂在1.0 mol/L KOH溶液中的线性扫描伏安(LSV)图 (a)、塔菲尔(Tafel)斜率图 (b)、电流密度分别为1 mA·cm−2和10 mA·cm−2时的过电位和Tafel斜率柱状图 (c) 及交流阻抗图 (d)

    Figure  6.  Linear sweep voltammetry (LSV) curves (a), Tafel plots (b), bar graph of overpotentials at 1 mA·cm−2 and 10 mA·cm−2, and the Tafel slope (c) and electrochemical impedance spectroscopy (d) of Ni-NiO/N-C catalysts

    图  7  N-C (a)、Ni-NiO/N-C-0.4 (b)、Ni-NiO/N-C-0.6 (c) 和Ni-NiO/N-C-0.8 (d) 在不同扫速下的伏安分析(CV)曲线和双层电容曲线 (e)

    Figure  7.  Voltammetry analysis (CV) curves at different scan rates of N-C (a), Ni-NiO/N-C-0.4 (b), Ni-NiO/N-C-0.6 (c), Ni-NiO/N-C-0.8 (d), and the capacitive current densities plotted against scan rate (e)

    图  8  Ni-NiO/N-C-0.6和Pt/C催化剂的计时电流(i-t)曲线(a)、Ni-NiO/N-C-0.6催化剂在计时电流曲线前后(b)及在连续循环1000个CV前后(c)的LSV极化曲线

    Figure  8.  Aamperometric timing current (i-t) curves of Ni-NiO/N-C-0.6 and Pt/C catalysts (a), linear sweep voltammetry (LSV) curves of Ni-NiO/N-C-0.6 catalysts before and after the chronocurrent curves (b) and 1000 CV cycles (c)

    表  1  Ni-NiO/N-C催化剂样品的比表面积和孔体积数据

    Table  1.   Specific surface area and pore volume of Ni-NiO/N-C catalyst samples

    SampleSBET/(m2·g−1)Pv/(cm3·g−1)
    N-C 299.33 1.88
    Ni-NiO/N-C-0.4 361.40 3.41
    Ni-NiO/N-C-0.6 381.75 4.61
    Ni-NiO/N-C-0.8 388.25 7.47
    Notes: SBET—Specific surface area; Pv—Pore volume.
    下载: 导出CSV

    表  2  Ni-NiO/N-C催化剂中各种元素的含量

    Table  2.   Contents of different elements in the Ni-NiO/N-C catalysts

    SampleC/at%N/at%Ni/at%O/at%
    N-C 81.35 7.32 6.41
    Ni-NiO/N-C-0.4 84.90 7.06 1.62 9.64
    Ni-NiO/N-C-0.6 83.39 7.74 2.20 5.61
    Ni-NiO/N-C-0.8 84.84 6.72 2.84 11.32
    下载: 导出CSV
  • [1] LEWIS N S, NOCERA D G. Powering the planet: Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences,2006,103(43):15729-15735. doi: 10.1073/pnas.0603395103
    [2] 蔡昊源. 电解水制氢方式的原理及研究进展[J]. 环境与发展, 2020, 32(5):129-131.

    CAI H Y. Principle and research progress of hydrogen production by electrolyzing water[J]. Environment& Development,2020,32(5):129-131(in Chinese).
    [3] CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications,2016,7:13638. doi: 10.1038/ncomms13638
    [4] WANG C H, HU F, YANG H C, et al. 1.82 wt% Pt/N, P co-doped carbon overwhelms 20 wt% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction[J]. Nano Research,2017,10(1):1-9. doi: 10.1007/s12274-016-1283-7
    [5] GONG M, ZHOU W, TSAI M C, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis[J]. Nature Communications,2014,5:4695. doi: 10.1038/ncomms5695
    [6] CHEN Z L, WU R B, LIU Y, et al. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction[J]. Advanced Materials,2018,30(30):1802011. doi: 10.1002/adma.201802011
    [7] JIN X X, WANG R Y, ZHANG L X, et al. Electron configuration modulation of Ni single atoms for remarkably elevated photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2020,59(17):6827-6831. doi: 10.1002/anie.201914565
    [8] ZHENG X L, XU J B, YAN K Y, et al. Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction[J]. Chemistry of Materials,2014,26(7):2344-2353. doi: 10.1021/cm500347r
    [9] LV X, YIN S. CoP-embedded nitrogen and phosphorus co-doped mesoporous carbon nanotube for efficient hydrogen evolution[J]. Applied Surface Science,2021,537:147834. doi: 10.1016/j.apsusc.2020.147834
    [10] PU Z H, WANG M, KOU Z K, et al. Mo2C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range[J]. Chemical Communications,2016,52(86):12753-12756. doi: 10.1039/C6CC06267A
    [11] ANANTHARAJ S, KUNDU S, NODA S. Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2020,8(8):4174-4192. doi: 10.1039/C9TA14037A
    [12] POPCZUN E J, MCKONE J R, READ C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Che-mical Society,2013,135(25):9267-9270. doi: 10.1021/ja403440e
    [13] CHEN W F, SASAKI K, MA C, et al. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets[J]. Angewandte Chemie International Edition,2012,51(25):6131-6135. doi: 10.1002/anie.201200699
    [14] LOVELL E C, LU X Y, ZHANG Q R, et al. From passivation to activation-tunable nickel/nickel oxide for hydrogen evolution electrocatalysis[J]. Chemical Communications,2020,56(11):1709-1712. doi: 10.1039/C9CC07486D
    [15] LASZCYSKA A, SZCZYGIE I. Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings[J]. International Journal of Hydrogen Energy,2020,45(1):508-520. doi: 10.1016/j.ijhydene.2019.10.181
    [16] MILES M H, THOMASON M A. Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltametric studies. [31 metals as electrocatalysts][J]. Journal of the Electrochemical Society,1976,123(10):1459-1461. doi: 10.1149/1.2132619
    [17] DUTTA S, HAN H, JE M, et al. Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction[J]. Nano Energy,2019,67:104245.
    [18] YANG J, WU H L, ZHU M, et al. Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors[J]. Nano Energy,2017,33:453-461. doi: 10.1016/j.nanoen.2017.02.007
    [19] BIN D, YANG B B, LI C, et al. In situ growth of NiFe alloy nanoparticles embedded into N-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn-Air batteries[J]. ACS Applied Materials & Interfaces,2018,10(31):26178-26187.
    [20] 张玉晖, 易清风. 铁/钴质量比对MWCNT-聚苯胺复合物氧还原电活性的影响[J]. 化工学报, 2014, 65(6):2113-2119. doi: 10.3969/j.issn.0438-1157.2014.06.023

    ZHANG Y H, YI Q F. Effect of Fe/Co mass ratio on activity of non-noble metal catalyst for oxygen reduction reaction[J]. Journal of Chemical Industry and Engineering (China),2014,65(6):2113-2119(in Chinese). doi: 10.3969/j.issn.0438-1157.2014.06.023
    [21] WU S D, LV X N, PIN D, et al. Highly exposed atomic Fe-N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO[J]. Electrochimica Acta,2020,340:135930. doi: 10.1016/j.electacta.2020.135930
    [22] AHN S H, HWANG S J, YOO S J, et al. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis[J]. Jour-nal of Materials Chemistry,2012,22(30):15153-15159. doi: 10.1039/c2jm31439h
    [23] 魏强, 孙慧, 钱君超, 等. CeO2/石墨烯的合成及其在光催化制氢中的应用[J]. 复合材料学报, 2018, 35(3):684-689.

    WEI Q, SUN H, QIAN J C, et al. Synthesis of CeO2/graphene and its application in photocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica,2018,35(3):684-689(in Chinese).
    [24] CHEN Y F, LI Z J, ZHU Y B, et al. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction[J]. Advanced Materials,2019,31(8):1806312. doi: 10.1002/adma.201806312
    [25] KHANI H, GRUNDISH N S, WIPF D O, et al. Graphitic-shell encapsulation of metal electrocatalysts for oxygen evolution, oxygen reduction, and hydrogen evolution in alkaline solution[J]. Advanced Energy Materials,2020,10(1):1903215. doi: 10.1002/aenm.201903215
    [26] LAI F L, MIAO Y E, HUANG Y P, et al. Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces,2016,8(6):3558-3566.
    [27] GOEL C, BHUNIA H, BAJPAI P K. Synthesis of nitrogen doped mesoporous carbons for carbon dioxide capture[J]. RSC Advances,2015,5(58):46568-46582. doi: 10.1039/C5RA05684E
    [28] YAN X X, GU M Y, WANG Y, et al. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis[J]. Nano Research,2020,13(4):975-982. doi: 10.1007/s12274-020-2727-7
    [29] ZENG M, LI Y G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction[J]. Jour-nal of Materials Chemistry A,2015,3(29):14942-14962. doi: 10.1039/C5TA02974K
    [30] CASTELO-QUIBÉN J, ABDELWAHAB A, PÉREZ-CADENAS M, et al. Carbon-iron electro-catalysts for CO2 reduction. The role of the iron particle size[J]. Journal of CO2 Utilization,2018,24:240-249. doi: 10.1016/j.jcou.2018.01.007
    [31] 曾庆乐, 刘小超, 刘超, 等. Co2Ni1O4/不锈钢复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2021, 38(11):3764-3774.

    ZENG Q L, LIU X C, LIU C, et al. Synthesis and electrocatalytic oxygen evolution performances of Co2Ni1O4/stainless steel composites[J]. Acta Materiae Compositae Sinica,2021,38(11):3764-3774(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1395
  • HTML全文浏览量:  702
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 修回日期:  2021-06-01
  • 录用日期:  2021-06-08
  • 网络出版日期:  2021-06-18
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回