留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为

邓亚斌 任毅如 蒋宏勇

邓亚斌, 任毅如, 蒋宏勇. 复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为[J]. 复合材料学报, 2022, 39(4): 1790-1797. doi: 10.13801/j.cnki.fhclxb.20210617.002
引用本文: 邓亚斌, 任毅如, 蒋宏勇. 复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为[J]. 复合材料学报, 2022, 39(4): 1790-1797. doi: 10.13801/j.cnki.fhclxb.20210617.002
DENG Yabin, REN Yiru, JIANG Hongyong. Oblique crushing failure behaviors of composite energy-absorbing circular tube under the semi-circular cavity triggering mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1790-1797. doi: 10.13801/j.cnki.fhclxb.20210617.002
Citation: DENG Yabin, REN Yiru, JIANG Hongyong. Oblique crushing failure behaviors of composite energy-absorbing circular tube under the semi-circular cavity triggering mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1790-1797. doi: 10.13801/j.cnki.fhclxb.20210617.002

复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为

doi: 10.13801/j.cnki.fhclxb.20210617.002
基金项目: 国家自然科学基金创新研究群体项目(51621004)
详细信息
    通讯作者:

    任毅如,博士,副教授,博士生导师,研究方向为运载装备结构与轻量化设计 E-mail:renyiru@hnu.edu.cn

  • 中图分类号: TH140.1; TB332; TB122

Oblique crushing failure behaviors of composite energy-absorbing circular tube under the semi-circular cavity triggering mechanism

  • 摘要: 有效的触发机制能诱导并改善复合材料吸能结构的轴向渐进压溃行为,但仍无法解决汽车吸能结构在斜向冲击载荷下的失稳问题。为了提出新的设计来改善失稳行为,对复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃行为和失效机制进行研究。建立引入半圆凹槽触发机制的圆管有限元模型,采用界面和层内非线性损伤演化模型来模拟其真实的压溃失效模式。通过对比模拟和实验对应的轴向压溃载荷、吸能和失效模式来验证圆管的准静态压溃模型。进而,预测斜向压溃角度(10°~50°)对圆管在半圆凹槽触发机制下压溃行为的影响,并详细揭示其轴向和斜向压溃失效机制及其区别。结果表明,压溃载荷、吸能及失效面积随角度增大而明显减小,不稳定的压溃过程使材料失效耗能不充分。圆管在轴向压溃下表现为渐进破坏,而在斜向压溃下以“渐进破坏”向“失稳破坏”过渡为特征,导致斜向压溃载荷与吸能曲线均存在一个过渡。本研究加深了对圆管在外部触发机制下斜向压溃失效机制的理解,为改善斜向压溃失稳行为提供了一定的设计依据。

     

  • 图  1  碳纤维增强树脂复合材料(CFRP)吸能圆管的有限元模型 (a)、斜向加载条件 (b)

    Figure  1.  Finite element model of carbon fiber reinforced resin composite (CFRP) energy-absorption tube (a), oblique loading condition (b)

    θ—Angle of oblique crushing; r—Semicircular groove radius

    图  2  实验[21]和模拟的CFRP吸能圆管轴向压溃载荷响应和最终压溃模式

    Figure  2.  Axial crushing response and the final crushing mode of experiment[21] and simulation of CFRP energy-absorption tube

    图  3  压溃角度对CFRP吸能圆管斜向压溃载荷和吸能的影响

    Figure  3.  Effect of crushing angle on oblique crushing load and energy absorption of CFRP energy-absorption circular tube

    图  4  压溃角度对CFRP吸能圆管斜向压溃失效模式的影响

    Figure  4.  Effect of crushing angle on failure mode of CFRP energy-absorption tube subject to oblique collapse

    图  5  CFRP吸能圆管在斜向压溃下的失效过程

    Figure  5.  Failure process of CFRP energy-absorption tube under oblique crushing

    s—Displacement

    图  6  CFRP吸能圆管轴向(a)、斜向(b)压溃失效机制

    Figure  6.  Failure mechanisms of CFRP energy-absorption tube under axial crushing (a) and oblique crushing (b)

    表  1  CFRP编织复合材料参数[10, 23]

    Table  1.   Material parameters of woven fabric CFRP composites[10, 23]

    PropertyValuePropertyValue
    Longitudinal modulus ${E_{11}}$/GPa 57.02 Transverse modulus ${E_{22}}$/GPa 57.02
    Shear modulus ${G_{12}}$/GPa 458.6 Principal Poisson’s ratio ${v_{12}}$ 0.067
    Longitudinal tension strength ${X_{11 + }}$/MPa 679.67 Longitudinal compression strength ${X_{11 - }}$/MPa 512.53
    Transverse tension strength ${X_{22 + }}$/MPa 679.67 Transverse compression strength ${X_{22 - }}$/MPa 512.53
    In-plane shear strength ${X_{12}}$/MPa 68 Longitudinal tension fracture $G_{\rm{f}}^{11 + }$/(kJ·m−2) 85.4
    Longitudinal compressive fracture $G_{\rm{f}}^{11 - }$/(kJ·m−2) 155.3 Transverse tension fracture $G_{\rm{f}}^{22 + }$/(kJ·m−2) 85.4
    Transverse compressive fracture $G_{\rm{f}}^{22 - }$/(kJ·m−2) 155.3 Interface strength in the normal direction $ {t}_{\rm{n}}^{0}$/MPa 54
    Interface strength in the shear direction $t_{\rm{s}}^0,\;t_{\rm{t}}^0$/MPa 70 Mode-I fracture toughness $G_{\rm{n}}^{\rm{C}}$/(kJ·m−2) 0.504
    Mode-II fracture toughness $G_{\rm{s}}^{\rm{C}},\;G_{\rm{t}}^{\rm{C}}$/(kJ·m−2) 1.566
    下载: 导出CSV
  • [1] 王雪琴, 张震东, 马大为, 等. 碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验研究[J]. 复合材料学报, 2021, 38(9):2894-2903.

    WANG Xueqin, ZHANG Zhendong, MA Dawei, et al. Quasi-static compression experimental study on energy absorption characteristics of multicellular structures filled with carbon fiber reinforced epoxy composite tubes[J]. Acta Materiae Compositae Sinica,2021,38(9):2894-2903(in Chinese).
    [2] 杨旭东, 安涛, 冯晓琳, 等. 泡沫铝填充碳纤维增强树脂复合材料薄壁管的压缩变形行为与吸能特性[J]. 复合材料学报, 2020, 37(8):1850-1860.

    YANG Xudong, AN Tao, FENG Xiaolin, et al. Compressive deformation behavior and energy absorption of Al foam-filled carbon fiber reinforced plastic thin-walled tube[J]. Acta Materiae Compositae Sinica,2020,37(8):1850-1860(in Chinese).
    [3] 张徐梁, 阳玉球, 阎建华, 等. 碳纤维-玻璃纤维混杂增强环氧树脂三维编织复合材料薄壁圆管压溃吸能特性与损伤机制[J]. 复合材料学报, 2021, 38(9):2821-2828.

    ZHANG Xuliang, YANG Yuqiu, YAN Jianhua, et al. Crushing energy absorption characteristics and damage mechanism of carbon fiber-glass fiber hybrid reinforced epoxy three-dimensional braided composite thin-walled circular tube[J]. Acta Materiae Compositae Sinica,2021,38(9):2821-2828(in Chinese).
    [4] JIANG H, REN Y. Crashworthiness and failure analysis of steeple-triggered hat-shaped composite structure under the axial and oblique crushing load[J]. Composite Structures,2019,229:111375. doi: 10.1016/j.compstruct.2019.111375
    [5] JIANG H, REN Y, GAO B. Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness[J]. Thin-Walled Structures,2017,119:531-543. doi: 10.1016/j.tws.2017.07.004
    [6] 张厚江, 陈五一, 陈鼎昌. 碳纤维复合材料(CFRP)钻孔出口缺陷的研究[J]. 机械工程学报, 2004, 40(7):150-155. doi: 10.3321/j.issn:0577-6686.2004.07.031

    ZHANG Houjiang, CHEN Wuyi, CHEN Dingchang. Investigation of the exit defects in drilling carbon fibre-reinforced plastic plates[J]. Journal of Mechanical Engineering,2004,40(7):150-155(in Chinese). doi: 10.3321/j.issn:0577-6686.2004.07.031
    [7] SIGALAS I, KUMOSA M, HULL D. Trigger mechanisms in energy-absorbing glass cloth/epoxy tubes[J]. Composites Science and Technology, 1991, 40(3): 265-287.
    [8] 龚俊杰, 王鑫伟. 复合材料波纹梁吸能能力的数值模拟[J]. 航空学报, 2005, 26(3):298-302. doi: 10.3321/j.issn:1000-6893.2005.03.009

    GONG Junjie, WANG Xinwei. Numerical simulation of energy absorption capability of composite waved beams[J]. Acta Aeronautica et Astronautica Sinica,2005,26(3):298-302(in Chinese). doi: 10.3321/j.issn:1000-6893.2005.03.009
    [9] 孟祥吉, 燕瑛, 罗海波, 等. 复合材料波纹梁冲击试验与数值模拟[J]. 复合材料学报, 2015, 32(1):196-203.

    MENG Xiangji, YAN Ying, LUO Haibo, et al. Impact tests and numerical simulation of composite waved-beam[J]. Acta Materiae Compositae Sinica,2015,32(1):196-203(in Chinese).
    [10] ZHAO X, ZHU G, ZHOU C, et al. Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J]. Composite Structure,2019,222:110920. doi: 10.1016/j.compstruct.2019.110920
    [11] JIANG H, REN Y, GAO B, et al. Design of novel plug-type triggers for composite square tubes: Enhancement of energy-absorption capacity and inducing failure mechanisms[J]. International Journal of Mechanical Sciences,2017,131-132:113-136. doi: 10.1016/j.ijmecsci.2017.06.050
    [12] REN Y, JIANG H, LIU Z. Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes[J]. International Journal of Mechanical Sciences,2019,157-158:1-12. doi: 10.1016/j.ijmecsci.2019.04.024
    [13] FERABOLI P, WADE B, DELEO F, et al. Crush energy absorption of composite channel section specimens[J]. Composites Part A: Applied Science and Manufacturing,2009,40:1248-1256. doi: 10.1016/j.compositesa.2009.05.021
    [14] 蒋宏勇, 任毅如, 袁秀良. 基于非线性渐进损伤模型的复合材料波纹梁耐撞性能研究[J]. 航空学报, 2017, 35(38):22717.

    JIANG Hongyong, REN Yiru, YUAN Xiuliang, et al. Crashworthiness of composite corrugated beam based on nonlinear progressive damage model[J]. Acta Aeronautica et Astronautica Sinica,2017,35(38):22717(in Chinese).
    [15] JIANG H, REN Y, ZHENG J. Gradient-degraded material-induced trigger to improve crashworthiness of composite tubes in a controlled manner[J]. Journal of Reinforced Plastics and Composites,2020,39(1-2):60-77. doi: 10.1177/0731684419872004
    [16] CHIU L N S, FALZON B G, RUAN D, et al. Crush responses of composite cylinder under quasi-static and dynamic loading[J]. Composite Structures,2015,131:90-98. doi: 10.1016/j.compstruct.2015.04.057
    [17] PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Crushing and energy absorption performance of different geometrical shapes of small-scale glass/polyester compo-site tubes under quasi-static loading conditions[J]. Composite Structures,2011,93(2):992-1007. doi: 10.1016/j.compstruct.2010.06.021
    [18] PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and triggering modelling[J]. Polymer Testing,2010,29(6):729-741. doi: 10.1016/j.polymertesting.2010.05.010
    [19] SIROMANI D, HENDERSON G, MIKITA D, et al. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression[J]. Composites Part A: Applied Science and Manufacturing,2014,64(21):25-35.
    [20] CHEN Y, YE L, ESCOBEDO-DIAZ J P, et al. Effect of initiator geometry on energy absorption of CFRP tubes under dynamic crushing[J]. International Journal of Crashworthiness,2020,26(5):526-536.
    [21] TONG Y, XU Y. Improvement of crash energy absorption of 2D braided composite tubes through an innovative chamfer external triggers[J]. International Journal of Impact Engineering,2018,111:11-20. doi: 10.1016/j.ijimpeng.2017.08.002
    [22] JOHNSON A F. Modelling fabric reinforced composites under impact loads[J]. Composites Part A: Applied Science and Manufacturing,2001,32:1197-1206.
    [23] SOKOLINSKY V S, INDERMUEHLE K C, HURTADO J A. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing,2011,42:1119-1126. doi: 10.1016/j.compositesa.2011.04.017
    [24] ABAQUS 6.13. Analysis user’s manual[M]. Dassault Systèmes, 2013.
    [25] MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. A thermodynamically consistent damage model for advanced compo-sites: NASA/TM-2006-214282[R]. Washington: NASA, 2006.
    [26] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology,1996,56(4):439-449. doi: 10.1016/0266-3538(96)00005-X
    [27] ZHU G, SUN G, YU H, et al. Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading[J]. International Journal of Mechanical Sciences,2018,135:458-483. doi: 10.1016/j.ijmecsci.2017.11.017
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1054
  • HTML全文浏览量:  433
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-15
  • 修回日期:  2021-05-18
  • 录用日期:  2021-06-10
  • 网络出版日期:  2021-06-17
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回