留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临泽红色低品位凹凸棒石黏土负载δ-MnO2室温降解甲醛

洪晓梅 陈天虎 王灿 邹雪华 韩正严

洪晓梅, 陈天虎, 王灿, 等. 临泽红色低品位凹凸棒石黏土负载δ-MnO2室温降解甲醛[J]. 复合材料学报, 2022, 39(4): 1617-1627. doi: 10.13801/j.cnki.fhclxb.20210609.001
引用本文: 洪晓梅, 陈天虎, 王灿, 等. 临泽红色低品位凹凸棒石黏土负载δ-MnO2室温降解甲醛[J]. 复合材料学报, 2022, 39(4): 1617-1627. doi: 10.13801/j.cnki.fhclxb.20210609.001
HONG Xiaomei, CHEN Tianhu, WANG Can, et al. δ-MnO2 supported on low-grade Palygorskite clay from Linze as a catalyst for formaldehyde catalytic oxidation at room temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1617-1627. doi: 10.13801/j.cnki.fhclxb.20210609.001
Citation: HONG Xiaomei, CHEN Tianhu, WANG Can, et al. δ-MnO2 supported on low-grade Palygorskite clay from Linze as a catalyst for formaldehyde catalytic oxidation at room temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1617-1627. doi: 10.13801/j.cnki.fhclxb.20210609.001

临泽红色低品位凹凸棒石黏土负载δ-MnO2室温降解甲醛

doi: 10.13801/j.cnki.fhclxb.20210609.001
基金项目: 国家自然科学基金(41872040;41772038);临泽县凹凸棒石产业发展开放课题(LZKFKT-1902)
详细信息
    通讯作者:

    陈天虎,博士,教授,博士生导师,研究方向为纳米矿物的环境应用 E-mail:chentianhu@hfut.edu.cn

  • 中图分类号: TB33

δ-MnO2 supported on low-grade Palygorskite clay from Linze as a catalyst for formaldehyde catalytic oxidation at room temperature

  • 摘要: 针对临泽地区低品位凹凸棒石黏土利用率低的问题,用预富集处理的临泽红色低品位凹凸棒石黏土(PPCI)为载体,利用高锰酸钾和草酸铵为反应前驱体,通过氧化还原法制备MnOx/PPCI复合催化剂,并用于常温下降解室内空气中甲醛效果评价。结果表明,Mn负载量为33.6wt%的复合催化剂具有优异性能,动态实验中,当进气甲醛浓度为1.22 mg/m3时,去除率在720 min内保持99%以上,而未负载的δ-MnO2在相同条件下去除甲醛的效率仅为87%;静态实验中对初始浓度为146.6 mg/m3的甲醛气体去除率高达95%以上,PPCI负载δ-MnO2可以显著提高锰基催化剂室温降解甲醛效果。δ-MnO2/PPCI复合催化剂降解甲醛反应遵循二级动力学。由于δ-MnO2在凹凸棒石黏土矿物表面高度分散,有更大的比表面积(73.2 m2/g),可以暴露出更多Mn3+/Mn4+活性电对,从而提高了复合催化剂的氧化还原能力和电化学活性,并最终促进甲醛的降解。通过原位红外光谱(In situ-DRFTS)研究了甲醛在复合催化剂表面中间产物的生成和转化过程,结果表明甲醛首先被表面羟基转化为亚甲基二氧(DOM),进而被表面活性氧氧化为甲酸盐物种(HCOO-),最终被氧化为CO2和H2O,并且催化反应消耗表面羟基可通过凹凸棒石表面吸附水与表面活性氧反应再生。本研究通过开发低品位凹凸棒石黏土,提高资源利用率,并为开发高效复合室内空气净化材料提供新思路。

     

  • 图  1  MnOx/PPCI复合催化材料的XRD图谱 (a) 和Raman图谱 (b)

    Figure  1.  XRD patterns (a) and Raman spectra (b) of MnOx/PPCI composite catalysts

    图  2  PPCI ((a)~(b)),δ-MnO2 ((c)~(e)),33.6 δ-MnO2/PPCI ((f)~(o)) 的SEM和TEM图像

    Figure  2.  SEM and TEM images of PPCI ((a)~(b)), δ-MnO2 ((c)-(e)) and 33.6 δ-MnO2/PPCI ((f)-(o))

    图  3  δ-MnO2和33.6 δ-MnO2/PPCI的XPS谱图:(a) 总测量扫描;(b) Mn2p;(c)Mn3s;(d) O1s

    Figure  3.  XPS spectra of δ-MnO2 and 33.6 δ-MnO2/PPCI: (a) Total survey scans; (b) Mn2p; (c) Mn3s; (d) O1s

    AOS—Average oxidation state

    图  4  催化剂的电化学性能:(a)循环伏安曲线;(b)塔菲尔极化曲线

    Figure  4.  Electrochemical properties of catalysts: (a) Cyclic voltammograms curves; (b) Tafel polarization curves

    图  5  催化剂去除甲醛的动态效能 (a)、33.6 δ-MnO2/PPCI长时间动态稳定性测试 (b)、静态效能 (c) 和33.6 δ-MnO2/PPCI 静态去除甲醛过程中CO2浓度变化 (d)

    Figure  5.  Dynamic performance (a), long-term stability of 33.6 δ-MnO2/PPCI under dynamic test (b), static performance (c) and change of the CO2 concertration during formaldehyde removal by 33.6 δ-MnO2/PPCI under static test (d)

    C—Concentration

    图  6  催化剂的去除甲醛的一级动力学(a)和二级动力学(b)

    Figure  6.  First-order kinetic plots (a) and second-order kinetic plots (b) of the catalysts removal formaldehyde

    C0—Initial concentration of formaldehyde; Ct—Outlet concentration of formaldehyde at time t

    图  7  不同催化剂在环境温度下原位DRIFTS光谱:(a) PPCI;(b) δ-MnO2;(c) 33.6 δ-MnO2/PPCI;(d) 甲酸盐累积分解速率

    Figure  7.  In situ DRIFTS spectra of catalysts at room temperature: (a) PPCI; (b) δ-MnO2; (c) 33.6 δ-MnO2/PPCI;(d) Accumulation and decomposition rate of HCOO-

    图  8  δ-MnO2/PPCI降解甲醛机制

    Figure  8.  The possible mechanism for formaldehyde removal by δ-MnO2/PPCI

    表  1  MnOx/预富集处理的临泽红色低品位凹凸棒石黏土(PPCI)的命名

    Table  1.   Naming of MnOx/purifing palygorskite clay rich iron (PPCI)

    Sample Mn/wt% KMnO4/g PPCI/g
    6.2 δ-MnO2/PPCI 6.2 0.55 3
    11.6 δ-MnO2/PPCI 11.6 1.18 3
    15.7 δ-MnO2/PPCI 15.7 1.64 3
    23.0 δ-MnO2/PPCI 23.0 2.57 3
    26.7 δ-MnO2/PPCI 26.7 2.87 3
    33.6 δ-MnO2/PPCI 33.6 4.44 3
    35.6 δ-MnO2/PPCI 35.6 4.85 3
    下载: 导出CSV

    表  2  MnO2/PPCI复合材料的比表面积

    Table  2.   Specific surface area of MnO2/PPCI

    SampleSurface area/(m2·g−1)
    PPCI 64.3
    δ-MnO2 41.4
    6.2 δ-MnO2/PPCI 46.6
    11.6 δ-MnO2/PPCI 52.7
    15.7 δ-MnO2/PPCI 55.4
    23.0 δ-MnO2/PPCI 58.2
    26.7 δ-MnO2/PPCI 67.8
    33.6 δ-MnO2/PPCI 73.2
    35.6 δ-MnO2/PPCI 59.8
    下载: 导出CSV

    表  3  一级动力学和二级动力学模型的拟合数据

    Table  3.   Fitting data of the first-order and second-order kinetic models

    OrderParameterPPCIδ-MnO215.7 δ-MnO2/PPCI33.6 δ-MnO2/PPCI
    First k1 −0.0012 −0.039 −0.038 −0.041
    R2 0.7744 0.8031 0.8453 0.8108
    Second k2 1.45×10−4 2.18×10−3 1.59×10−3 1.86×10−3
    R2 0.8800 0.9891 0.9946 0.9872
    Notes: k1—Reaction rate constants of first-kinetic model; k2—Reaction rate constants of second-kinetic model; R2—Correlation.
    下载: 导出CSV
  • [1] LU N, PEI J J, ZHAO Y X, et al. Performance of a biological degradation method for indoor formaldehyde removal[J]. Building and Environment,2012,57:253-258. doi: 10.1016/j.buildenv.2012.05.007
    [2] MA C J, LI X, ZHU T L. Removal of low-concentration formaldehyde in air by adsorption on activated carbon modified by hexamethylene diamine[J]. Carbon,2011,49(8):2873-2875. doi: 10.1016/j.carbon.2011.02.058
    [3] NOHMAN A K H, ISAMIL H M, HUSSEIN G A M. Thermal and chemical events in the decomposition course of manganese compounds[J]. Journal of Analytical and Applied Pyrolysis,1995,34(2):265-278. doi: 10.1016/0165-2370(95)00896-M
    [4] SHIE J L, LEE C H, CHIOU C, CHANG C S, et al. Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst[J]. Journal of Hazardous Materials,2008,155(1-2):164-172. doi: 10.1016/j.jhazmat.2007.11.043
    [5] LIU P, HE H P, WEI G, et al. Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: Catalyst characterization, performance and reaction mechanism[J]. Applied Catalysis B: Environmental,2016,182:476-484. doi: 10.1016/j.apcatb.2015.09.055
    [6] 刘亚茹, 黄宇. MnO2基材料常温催化降解甲醛研究进展[J]. 地球环境学报, 2020, 11(1):14-30.

    LIU Yaru, HUANG Yu. Research progress on room-temperature catalytic degradation of formaldehyde over MnO2-based catalysts[J]. Journal of Earth Environment,2020,11(1):14-30(in Chinese).
    [7] LIU P, HE H P, WEI G H, et al. An efficient catalyst of manganese supported on diatomite for toluene oxidation: Manganese species, catalytic performance, and structure-activity relationship[J]. Microporous and Mesoporous Materials,2017,239:101-110. doi: 10.1016/j.micromeso.2016.09.053
    [8] LIANG X L, LIU P, HE H P, et al. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation[J]. Journal of Hazardous Materials. 2016, 306: 305-312.
    [9] 陈天虎, 徐晓春, 岳书仓. 苏皖凹凸棒石粘土纳米矿物学及地球化学[M]. 北京: 科学出版社, 2004.

    CHEN Tianhu, XU Xiaochun, YUE Shucang. Nanometer scale mineralogy and geochemistry of palygorskite clays in the border of Jiangsu and Anhui Provinces[M]. Beijing: Science Press, 2004(in Chinese).
    [10] 王文波, 牟斌, 张俊平, 等. 凹凸棒石: 从矿物材料到功能材料[J]. 中国科学: 化学, 2018, 48(12):1432-1451. doi: 10.1360/N032018-00193

    WANG Wenbo, MU Bin, ZHANG Junpin, et al. Attapulgite: from clay minerals to functional materials[J]. Scientia Sinica Chimica,2018,48(12):1432-1451(in Chinese). doi: 10.1360/N032018-00193
    [11] YIN H B, REN C, LI W. Introducing hydrate aluminum into porous thermally-treated calcium-rich attapulgite to enhance its phosphorus sorption capacity for sediment internal loading management[J]. Chemical Engineering Journal, 2018, 348: 704-712.
    [12] WANG H, WANG X J, LI J, et al. Comparison of palygorskite and struvite supported palygorskite derived from phosphate recovery in wastewater for in-situ immobilization of Cu, Pb and Cd in contaminated soil[J]. Journal of Hazardous Materials,2018,346:273-284. doi: 10.1016/j.jhazmat.2017.12.042
    [13] XU C B, QI J, YANG W. et al. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay[J]. Science of The Total Environment, 2019, 686: 476-483.
    [14] WEI Y X, SONG M, YU L, et al. Hydroxyl-promoter on hydrated Ni-(Mg, Si) attapulgite with high metal sintering resistance for biomass derived gas reforming[J]. International Journal of Hydrogen Energy, 2019, 44 (36): 20056-20067.
    [15] CHEN Y, CHEN T H, LIU H B, et al. High catalytic perfor-mance of the Al-promoted Ni/Palygorskite catalysts for dry reforming of methane[J]. Applied Clay Science, 2020, 188: 105498-105508.
    [16] 白国梁, 陶海兵, 蔡思敏, 等. 凹凸棒石(PG)负载V2O5催化剂脱除气态Hg0的研究[J]. 环境科学学报, 2019, 39(7):2369-2376.

    BAI Guoliang, TAO Haibing, CAI Simin, et al. Removal of vapor-phase Hg0 over a V2O5/PG catalyst[J]. Acta Scientiae Circumstantiae,2019,39(7):2369-2376(in Chinese).
    [17] ZOU X H, CHEN T H, ZHANG P, et al. High catalytic performance of Fe-Ni/palygorskite in the steam reforming of toluene for hydrogen production[J]. Applied Energy,2018,226:827-837. doi: 10.1016/j.apenergy.2018.06.005
    [18] ZHU L, WANG J L, RONG S P, et al. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature[J]. Applied Catalysis B: Environmental,2017,211:212-221. doi: 10.1016/j.apcatb.2017.04.025
    [19] LIU P, WEI G L, LIANG X L, et al. et al. Synergetic effect of Cu and Mn oxides supported on palygorskite for the catalytic oxidation of formaldehyde: Dispersion, microstructure, and catalytic performance[J]. Applied Clay Science,2018,161:265-273. doi: 10.1016/j.clay.2018.04.032
    [20] WANG C, CHEN T H, LIU H B, et al. Promotional catalytic oxidation of airborne formaldehyde over mineral-supported MnO2 at ambient temperature[J]. Applied Clay Science,2019,182:105289-105301. doi: 10.1016/j.clay.2019.105289
    [21] 任珺, 刘丽莉, 陶玲, 等. 甘肃地区凹凸棒石的矿物组成分析[J]. 硅酸盐通报, 2013, 32(11):2362-2365.

    REN Jun, LIU Lili, TAO Lin, et al. Mineral composition analysis of attapulgite from Gansu area[J]. Bulletin of The Chinese Ceramic Society,2013,32(11):2362-2365(in Chinese).
    [22] 张帅, 刘莉辉, 乔志川, 等. 临泽县杨台洼滩新近系白杨河组凹凸棒石的成因[J]. 矿物学报, 2019, 39(6):690-696.

    ZHANG Shuai, LIU Lihui, QIAO Zhichuan, et al. Genesis of attapulgite from the Neogene Baiyanghe Formation in the Yangtaiwatan area, Linze County, Gansu Province, China[J]. Acta Mineralogica Sinica,2019,39(6):690-696(in Chinese).
    [23] ZHANG Z F, WANG W B, KANG Y R, et al. Structure evolution of brick-red palygorskite induced by hydroxylammonium chloride[J]. Powder Technology,2018,327:246-254. doi: 10.1016/j.powtec.2017.12.067
    [24] LU Y S, DONG W K, WANG W K, et al. A comparative study of different natural palygorskite clays for fabricating cost-efficient and eco-friendly iron red composite pigments[J]. Applied Clay Science,2019,167:50-59. doi: 10.1016/j.clay.2018.10.008
    [25] LIU H B, CHEN T H, CHANG D Y, et al. Characterization and catalytic performance of Fe3Ni8/palygorskite for catalytic cracking of benzene[J]. Applied Clay Science,2013,74:135-140. doi: 10.1016/j.clay.2012.04.005
    [26] DING J J, HUANG D J, WANG W B, et al. Effect of removing coloring metal ions from the natural brick-red palygorskite on properties of alginate/palygorskite nanocompo-site film[J]. International Journal of Biological Macromolecules, 2019, 122: 684-694.
    [27] BROOKS H R, STEPHEN E K, JOHN M R. Dolomite dissolution: An alternative diagenetic pathway for the formation of palygorskite clay[J]. Sedimentology, 2019, 66 (5): 1803-1824.
    [28] WANG J L, LI J G, JIANG C J, et al. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Applied Catalysis B: Environmental,2017,204:147-155. doi: 10.1016/j.apcatb.2016.11.036
    [29] LIU Z P, MA R Z, EBINA Y S, et al. Synthesis and delamination of layered manganese oxide nanobelts[J]. Chemistry of Materials,2007,19(26):6504-6512. doi: 10.1021/cm7019203
    [30] WANG C, ZOU X H, LIU H B, et al. A highly efficient catalyst of palygorskite-supported manganese oxide for formaldehyde oxidation at ambient and low temperature: Performance, mechanism and reaction kinetics[J]. Applied Surface Science,2019,486:420-430. doi: 10.1016/j.apsusc.2019.04.257
    [31] CHU Q X, WANG X F, ZHANG X H, et al. Buckled layers in K0.66Mn2O4·0.28H2O and K0.99Mn3O6·1.25H2O synthesized at high pressure: Implication for the mechanism of layer-to-tunnel transformation in manganese oxides[J]. Inorganic Chemistry,2011,50:2049-2051. doi: 10.1021/ic102282v
    [32] HSU Y U, CHEN Y C, LIN Y G, et al. Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy[J]. Che-mical Communications, 2011, 47: 1252-1254.
    [33] ZOU X H, MA Z Y, LIU H B, et al. Green synthesis of Ni supported hematite catalysts for syngas production from catalytic cracking of toluene as a model compound of biomass tar[J]. Fuel,2018,217:343-351. doi: 10.1016/j.fuel.2017.12.063
    [34] DU X, LI C, ZHAO L, ZHANG J, et al. Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke[J]. Applied Catalysis B: Environmental,2018,232:37-48. doi: 10.1016/j.apcatb.2018.03.034
    [35] 张浩, 高青, 韩祥祥, 等. 基于XRF和XRD的热闷渣改性活性炭降解甲醛机理分析[J]. 光谱学与光谱分析, 2020, 40(5):1447-1451.

    ZHANG Hao, GAO Qin, HAN Xiangxiang, et al. Mechanism analysis of formaldehyde degradation by hot braised slag modified activated carbon based on XRF and XRD[J]. Spectroscopy and Spectral Analysis,2020,40(5):1447-1451(in Chinese).
    [36] ZHU L, WANG J L, RONG S P, et al. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature[J]. Applied Catalysis B: Environmental,2017,b, 211:212-221.
    [37] LI J P, ZHANG P, WANG J L, et al. Birnessite-type manganese oxide on granular activated carbon for formaldehyde removal at room temperature[J]. The Journal of Physical Chemistry C,2016,120:24121-24129. doi: 10.1021/acs.jpcc.6b07217
    [38] JIA J B, ZHANG P Y, CHEN L. The effect of morphology of α-MnO2 on catalytic decomposition of gaseous ozone[J]. Catalysis Science & Technology,2016,6:5841-5847.
    [39] WANG J L, YUNUS R, Li J G, et al. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature[J]. Applied Surface Science,2015,357:787-794. doi: 10.1016/j.apsusc.2015.09.109
    [40] LIU F, RONG S P, ZHANG P Y, et al. One-step synthesis of nanocarbon-decorated MnO2 with superior activity for indoor formaldehyde removal at room temperature[J]. Applied Catalysis B: Environmental,2018,235:158-167. doi: 10.1016/j.apcatb.2018.04.078
    [41] MIAO L, WANG J L, ZHANGP Y. Review on manganese dioxide for catalytic oxidation of airborne formaldehyde[J]. Applied Surface Science,2018,446:441-453.
    [42] GUO J H, LIN C X, JIANG C J, et al. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J]. Applied Surface Science,2019,475:237-255. doi: 10.1016/j.apsusc.2018.12.238
    [43] GUAN S N, LI W Z, MA J R, et al. A review of the preparation and applications of MnO2 composites in formaldehyde oxidation[J]. Journal of Industrial and Engineering Chemistry,2018,66:126-140. doi: 10.1016/j.jiec.2018.05.023
    [44] WANG M, ZHANG L X, HUANG W M, et al. The catalytic oxidation removal of low-concentration formaldehyde at high space velocity by partially crystallized mesoporous MnOx[J]. Chemical Engineering Journal,2017,320:667-676. doi: 10.1016/j.cej.2017.03.098
    [45] YOSHIKA S. Oxidative decomposition of formaldehyde by metal oxides at room temperature[J]. Atmospheric Environment,2002,36(35):5543-5547. doi: 10.1016/S1352-2310(02)00670-2
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1097
  • HTML全文浏览量:  734
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-06-01
  • 录用日期:  2021-06-02
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回