留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种刚度可调控的负泊松比管状结构

孙龙 任鑫 张毅 陶智 张相玉 谢亿民

孙龙, 任鑫, 张毅, 等. 一种刚度可调控的负泊松比管状结构[J]. 复合材料学报, 2022, 39(4): 1813-1823. doi: 10.13801/j.cnki.fhclxb.20210531.001
引用本文: 孙龙, 任鑫, 张毅, 等. 一种刚度可调控的负泊松比管状结构[J]. 复合材料学报, 2022, 39(4): 1813-1823. doi: 10.13801/j.cnki.fhclxb.20210531.001
SUN Long, REN Xin, ZHANG Yi, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1813-1823. doi: 10.13801/j.cnki.fhclxb.20210531.001
Citation: SUN Long, REN Xin, ZHANG Yi, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1813-1823. doi: 10.13801/j.cnki.fhclxb.20210531.001

一种刚度可调控的负泊松比管状结构

doi: 10.13801/j.cnki.fhclxb.20210531.001
基金项目: 国家自然科学基金(51978330;51808286;51778283);江苏省自然科学基金(BK20180710);江苏省研究生科研与实践创新计划项目(KYCX20_1009)
详细信息
    通讯作者:

    任鑫,副教授,博士,研究方向为新型材料与结构 E-mail:xin.ren@njtech.edu.cn

  • 中图分类号: TB330

An auxetic tubular structure with tuneable stiffness

  • 摘要: 负泊松比材料具有优良的抗压痕性、抗剪切性、曲面同向性、断裂韧性和能量吸收性等特点,受到了国内外学者的广泛关注。负泊松比管状结构作为一个新兴的研究热点,在工程和医疗领域都有着广泛的应用前景。然而,在拉伸与压缩下同时具有负泊松比效应的管状结构仍鲜有报道。由于内部周期性孔洞的存在,大多数负泊松比材料和结构具有较低的比刚度。因此,本文提出了一种新型刚度可调控的负泊松比管状结构,并对不同旋转方式、密实点提前程度、变形区域高度h等参数进行了有限元分析与试验研究。研究结果表明:变刚度圆管的刚度大小可通过密实点比例因子进行调控,同时可以调整h值的大小来减小设计值与真实值之间的误差。新研制的负泊松比管状结构不仅大幅提升了负泊松比管状结构的刚度,且同时维持了理想的负泊松比效应。本文所研发的负泊松比管状结构在防护工程中具有较好的应用前景,且为负泊松比结构的设计提供了新思路。

     

  • 图  1  模态比例因子为18%的负泊松比管状结构

    Figure  1.  Auxetic tubular structure with pattern scale factor of 18%

    图  2  模态比例因子为18%的负泊松比管状结构对应的平面图

    Figure  2.  Corresponding planar sheet of auxetic tubular structure with pattern scale factor of 18%

    2a—Long axis; 2b—Short axis; c—Separation distance

    图  3  变刚度设计原理

    Figure  3.  Design concept of tuneable stiffness

    θ—Maximum rotation angle; θ1—Angle between the cut line and the horizontal line; h—Height of deformation zone

    图  4  变刚度负泊松比胞元旋转方式

    Figure  4.  Rotation modes of auxetic unit cell with tuneable stiffness

    图  5  变刚度负泊松比代表性体积胞元(h=1 mm)

    Figure  5.  Representative volume element of auxetic unit cell with tuneable stiffness (h=1 mm)

    η—Variable stiffness scale factor

    图  6  负泊松比管状结构实验试件

    Figure  6.  Test specimens of auxetic tubular structures

    H—Height; T—Thickness; D—External diameter; d—Internal diameter

    图  7  3D打印热塑性聚氨酯弹性体橡胶(TPU)狗骨型样条的单轴拉伸实验

    Figure  7.  Uniaxial tensile test of 3D printed thermoplastic polyurethane elastomer rubber (TPU) dog-bone specimens

    图  8  3D打印TPU狗骨型样条的名义应力-名义应变曲线

    Figure  8.  Nominal stress-nominal strain curve of 3D printed TPU dog-bone specimen

    图  9  2种负泊松比管状结构的实验过程图像(标尺:10 mm)

    Figure  9.  Experimental images of two auxetic tubular structures (Scale bar: 10 mm)

    图  11  2种负泊松比管状结构的名义应力-名义应变曲线

    Figure  11.  Nominal stress-nominal strain curves of two auxetic tubular structures

    图  10  2种负泊松比管状结构的荷载-位移曲线

    Figure  10.  Load-displacement curves of two auxetic tubular structures

    图  12  2种负泊松比管状结构有限元模型变形情况

    Figure  12.  Deformation of finite element models of two auxetic tubular structures

    图  13  2种负泊松比管状结构的试验与有限元结果对比

    Figure  13.  Comparison of experimental and finite element results between two auxetic tubular structures

    图  14  2种负泊松比管状结构的泊松比变化

    Figure  14.  Poisson’s ratio distribution of two auxetic tubular structures

    图  15  变形区域高度h对变刚度负泊松比管状结构力学性能的影响

    Figure  15.  Effect of height of deformation zone h on mechanical performances of auxetic tubular structures with tuneable stiffness

    图  16  变刚度负泊松比管状结构旋转方式与变刚度比例因子参数分析结果

    Figure  16.  Parametric analysis of rotation modes and variable stiffness scale factors of auxetic tubular structures with tuneable stiffness

  • [1] EVANS K E. Auxetic polymers: A new range of materials[J]. Endeavour,1991,15(4):170-174. doi: 10.1016/0160-9327(91)90123-S
    [2] YANG S, QI C, WANG D, et al. A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores[J]. Advances in Mechanical Engineering,2015,5:589216.
    [3] CHOI J B, LAKES R S. Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: Experiment and analysis[J]. International Journal of Fracture,1996,80(1):73-83. doi: 10.1007/BF00036481
    [4] CARNEIRO V H, MEIRELES J, PUGA H. Auxetic materials-A review[J]. Materials Science Poland,2013,31(4):561-571. doi: 10.2478/s13536-013-0140-6
    [5] ALDERSON A, ALDERSON K L, CHIRIMA G, et al. The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs[J]. Composites Science and Technology,2010,70(7):1034-1041. doi: 10.1016/j.compscitech.2009.07.010
    [6] LAKES R. Foam structures with a negative Poisson’s ratio[J]. Science,1987,235:384-387.
    [7] 王鲁, 姜秉元. 负泊松比复合材料裂纹尖端应力场[J]. 复合材料学报, 1996, 13(3):112-117.

    WANG Lu, JIANG Bingyuan. Neartip stress fields for crack in composite with negative Poisson’s ratio[J]. Acta Materiae Compositae Sinica,1996,13(3):112-117(in Chinese).
    [8] IMBALZANO G, TRAN P, NGO T D, etal. A numerical study of auxetic composite panels under blast loadings[J]. Composite Structures,2016,135:339-352. doi: 10.1016/j.compstruct.2015.09.038
    [9] 张伟, 侯文彬, 胡平. 新型负泊松比多孔吸能盒平台区力学性能[J]. 复合材料学报, 2015, 32(2):534-541.

    ZHANG Wei, HOU Wenbin, HU Ping. Mechanical properties of new negative Poisson’s ratio crush box with cellular structure in plateau stage[J]. Acta Materiae Compositae Sinica,2015,32(2):534-541(in Chinese).
    [10] YANG L, HARRYSSON O, WEST H, et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures,2015,69-70:475-490. doi: 10.1016/j.ijsolstr.2015.05.005
    [11] 苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8):49-58.

    SU Jilong, WU Jindong, LIU Yuanli. Progress in elastic property and impact resistance of honeycomb structure mechanical metamaterial[J]. Journal of Materials Engineering,2019,47(8):49-58(in Chinese).
    [12] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3):656-687.

    REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(3):656-687(in Chinese).
    [13] GRIMA J N, MANICARO E, ATTARD D. Auxetic behaviour from connected different-sized squares and rectangles[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2011,467(2126):439-458. doi: 10.1098/rspa.2010.0171
    [14] LUO C, HAN C Z, ZHANG X Y, et al. Design, manufacturing and applications of auxetic tubular structures: A review[J]. Thin-Walled Structures,2021,163:107682. doi: 10.1016/j.tws.2021.107682
    [15] ALI M N, REHMAN I U. An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer: development and in vitro mechanical analysis[J]. Journal of Materials: Science Materials in Medicine,2011,22(11):2573-2581. doi: 10.1007/s10856-011-4436-y
    [16] MIGLIAVACCA F, PETRINI L, MASSAROTTI P, et al. Stainless and shape memory alloy coronary stents: A computational study on the interaction with the vascular wall[J]. Biomechanics and Modeling in Mechanobiology,2004,2(4):205-217.
    [17] KURIBAYASHI K, TSUCHIYA K, YOU Z, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[J]. Materials Science and Engineering: A,2006,419(1-2):131-137. doi: 10.1016/j.msea.2005.12.016
    [18] GRIMA J N, MIZZI L, AZZOPARDI K M, et al. Auxetic perforated mechanical metamaterials with randomly oriented cuts[J]. Advanced Materials,2016,28(2):385-389. doi: 10.1002/adma.201503653
    [19] REN X, LIU F C, ZHANG X Y, et al. Numerical investigation of tubular structures generated by cutting method and pattern scale factor (PSF) method[J]. Pigment & Resin Technology, 2019, 50(5): 419-425.
    [20] REN X, SHEN J H, GHAEDIZADEH A, et al. A simple auxetic tubular structure with tuneable mechanical properties[J]. Smart Materials and Structures,2016,25(6):65012. doi: 10.1088/0964-1726/25/6/065012
    [21] GAO Q, ZHAO X, WANG C Z, et al. Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading[J]. Materials & Design,2018,143:120-130.
    [22] LEE W, JEONG Y, YOO J, et al. Effect of auxetic structures on crash behavior of cylindrical tube[J]. Composite Structures,2019,208:836-846. doi: 10.1016/j.compstruct.2018.10.068
    [23] KARNESSIS N, BURRIESCI G. Uniaxial and buckling mechanical response of auxetic cellular tubes[J]. Smart Materials and Structures,2013,22(8):84008. doi: 10.1088/0964-1726/22/8/084008
    [24] REN X, SHEN J H, PHUONG T, et al. Auxetic nail: Design and experimental study[J]. Composite Structures,2018,184:288-298. doi: 10.1016/j.compstruct.2017.10.013
    [25] ZHANG X Y, WANG X Y, REN X, et al. A novel type of tubular structure with auxeticity both in radial direction and wall thickness[J]. Thin-Walled Structures,2021,163:107758. doi: 10.1016/j.tws.2021.107758
    [26] HUR J M, SEO D S, KIM K, et al. Harnessing distinct deformation modes of auxetic patterns for stiffness design of tubular structures[J]. Materials & Design,2021,198:109376.
    [27] CHEN Q, PUGNO N M. In-plane elastic buckling of hierarchical honeycomb materials[J]. European Journal of Mechanics-A/Solids,2012,34:120-129. doi: 10.1016/j.euromechsol.2011.12.003
    [28] 秦浩星, 杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4):1014-1023.

    QIN Haoxing, YANG Deqing. Functional element topology optimal method of metamaterial design with arbitrary negative Poisson’s ratio[J]. Acta Materiae Compositae Sinica,2018,35(4):1014-1023(in Chinese).
    [29] LI D, MA J, DONG L, et al. Stiff square structure with a negative Poisson's ratio[J]. Materials Letters,2017,188:149-151. doi: 10.1016/j.matlet.2016.11.036
    [30] LU Z X, LI X, YANG Z Y, et al. Novel structure with negative Poisson’s ratio and enhanced Young’s modulus[J]. Composite Structures,2016,138:243-252. doi: 10.1016/j.compstruct.2015.11.036
    [31] LOGAKANNAN K P, RAMACHANDRAN V, RENGASWAMY J, et al. Quasi-static and dynamic compression behaviors of a novel auxetic structure[J]. Composite Structures,2020,254:112853. doi: 10.1016/j.compstruct.2020.112853
    [32] REN X, SHEN J H, GHAEDIZADEH A, et al. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties[J]. Smart Materials and Structures,2015,24(9):95016. doi: 10.1088/0964-1726/24/9/095016
    [33] ZHANGX Y, REN X. A simple methodology to generate metamaterials and structures with negative Poisson’s ratio[J]. Physica Status Solidi (B),2020,257(10):2000439. doi: 10.1002/pssb.202000439
    [34] REN X, SHEN J H, TRAN P, et al. Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial[J]. Materials& Design,2018,139:336-342.
    [35] GRIMA J N, ZAMMIT V, GATT R. Auxetic behaviour from rotating semirigid units[J]. Physica Status Solidi (B),2007,244(3):866-882. doi: 10.1002/pssb.200572706
    [36] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids[J]. Journal of Cellular Plastics,2006,42:371-392. doi: 10.1177/0021955X06063519
    [37] SHEN J H, XIE Y M, HUANG X D, et al. Mechanical properties of luffa sponge[J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,15:141-152. doi: 10.1016/j.jmbbm.2012.07.004
  • 加载中
图(16)
计量
  • 文章访问数:  1641
  • HTML全文浏览量:  652
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-05-10
  • 录用日期:  2021-05-19
  • 网络出版日期:  2021-05-31
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回