留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壳聚糖/浮石浮上式复合除藻材料的制备及其除藻性能和除藻机制

徐园园 郑宇 田啸 王趁义 方雨博

徐园园, 郑宇, 田啸, 等. 壳聚糖/浮石浮上式复合除藻材料的制备及其除藻性能和除藻机制[J]. 复合材料学报, 2022, 39(3): 1300-1307. doi: 10.13801/j.cnki.fhclxb.20210520.003
引用本文: 徐园园, 郑宇, 田啸, 等. 壳聚糖/浮石浮上式复合除藻材料的制备及其除藻性能和除藻机制[J]. 复合材料学报, 2022, 39(3): 1300-1307. doi: 10.13801/j.cnki.fhclxb.20210520.003
XU Yuanyuan, ZHENG Yu, TIAN Xiao, et al. Study on the preparation of chitosan-pumice floating composite material for removing algae and its performance and mechanism of removing algae[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1300-1307. doi: 10.13801/j.cnki.fhclxb.20210520.003
Citation: XU Yuanyuan, ZHENG Yu, TIAN Xiao, et al. Study on the preparation of chitosan-pumice floating composite material for removing algae and its performance and mechanism of removing algae[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1300-1307. doi: 10.13801/j.cnki.fhclxb.20210520.003

壳聚糖/浮石浮上式复合除藻材料的制备及其除藻性能和除藻机制

doi: 10.13801/j.cnki.fhclxb.20210520.003
基金项目: 国家自然科学基金(21207036);浙江省基础公益研究计划项目(LGF21E080014);宁波市高新区重大科技专项(2020D类,20201CX050018);浙江省“生物工程”一流学科自设课题(ZS2020007);浙江省一流学科“生物工程”研究生创新项目(CX2020027;CX2020036);浙江省级大学生创新创业训练计划(S202010876037;S202010876084)暨新苗人才计划(2020R419013);浙江万里学院生态养殖模式与尾水水质调控科技特派团队项目(甬科社〔2018〕65号)
详细信息
    通讯作者:

    王趁义,博士,教授,硕士生导师,研究方向为环境污染治理与生态修复 E-mail:wcyxz@163.com

  • 中图分类号: TB332;X522

Study on the preparation of chitosan-pumice floating composite material for removing algae and its performance and mechanism of removing algae

  • 摘要: 鉴于江河湖库有害藻华现象频发,目前较多使用的是高效絮凝剂与天然粘土矿物联合除藻,但存在着用量大、淤泥多、使底泥增厚、沉下去的藻类仍会伺机爆发等缺点,无法达到令人满意的除藻效果。本文使用轻质漂浮矿物浮石作为载体,制备一种不产生底泥的壳聚糖/浮石浮上式复合除藻材料,以铜绿微囊藻为受试对象,研究了物料配比、投加量、藻悬液pH、反应时间等因素对其絮凝除藻性能的影响,对复合除藻材料的表面形貌及成分进行了SEM和XRF表征,并通过Zeta电位方法探讨了该材料的除藻机制。结果表明:其最佳制备和使用条件为:壳聚糖/浮石配比为10∶1,当藻悬液pH为7,100 mL藻悬液中投加复合除藻材料6 g,反应时间180 min时,复合材料对浊度(NTU)去除率最高为94%,对叶绿素Chlorophyll a(Chl-a)的去除率可达98%;其性能优良的原因在于,该材料的表面凹凸不平,表面积大,且其Zeta电位为正值,极易与带负电的藻发生吸附絮凝和电荷中和,使藻细胞不断聚集形成大絮体,表现出良好的除藻效果。

     

  • 图  1  壳聚糖/浮石配比对叶绿素(Chl-a)和浊度(NTU)去除率影响

    Figure  1.  Effect of chitosan pumice ratio on Chlorophyll a (Chl-a) and turbidity (NTU) removal rate

    图  2  浮石 (a)、壳聚糖/浮石复合材料 (b) 的SEM图像(50.0 k)

    Figure  2.  SEM images of pumice (a), chitosan/pumice composite (b) (50.0 k)

    图  3  壳聚糖/浮石复合材料投加量 (a)、藻悬液pH值 (b) 及反应时间 (c) 对絮凝除藻效果的影响

    Figure  3.  Effects of chitosan/pumice composite dosage (a), pH value of algae suspension (b) and reaction time (c) on algae removal by flocculation

    图  4  浮石投加量 (a)、壳聚糖 (b) 投加量及其3种材料的最佳投加量 (c) 对铜绿微囊藻的絮凝效果

    Figure  4.  Flocculation of Microcystis aeruginosa with pumice dosage (a), chitosan dosage (b) and the best dosage of three materials(c)

    图  5  壳聚糖/浮石复合材料再生后对铜绿微囊藻的去除效果

    Figure  5.  Removal effect of microcystis aeruginosa after regeneration of chitosan/pumice composite

    图  6  实际水体小试及装置图

    Figure  6.  Actual water body and installation diagram

    图  7  装置组与市售除藻剂除藻效果比较

    Figure  7.  Comparison of algal removal effect between device group and commercial algal removal agentt

    图  8  pH值 (a)、壳聚糖/浮石配比 (b)、浮石及壳聚糖/浮石复合材料投加量 (c) 对Zeta电位的影响

    Figure  8.  Effects of pH value (a), ratio of chitosan pumice (b), dosage of pumice and chitosan/pumice composites (c) on Zeta potential.

    图  9  铜绿微囊藻絮凝显微镜观察图(10×40倍)

    Figure  9.  Microscopic observation of Microcystis aeruginosa (10×40 time) ((a) Original state diagram of Microcystis aeruginosa suspension; (b) State diagram of Microcystis aeruginosa suspension after adding chitosan flocculation reaction; (c) State diagram of Microcystis aeruginosa suspension after adding composite reaction; (d) State diagram of Microcystis aeruginosa suspension after adding composite 180 min)

  • [1] 宋靖珂, 王学江, 王佳忆, 等. 漂浮型Ag2CrO4/g-C3N4/TiO2可见光催化材料除藻性能[J]. 复合材料学报, 2021, 38(6):1914-1921.

    SONG Jingke, WANG Xuejiang, WANG Jiayi, et al. Algae rem oval performance of floating Ag2CrO4/g-C3N4/TiO2 visible light catalytic material[J]. Acta Materiae Compositae Sinica,2021,38(6):1914-1921(in Chinese).
    [2] WANG S K, WANG F, HU Y R, et al. Magnetic flocculant for high efficiency harvesting of microalgal cells[J]. ACS Applied Materials & Interfaces,2014,6(1):109-115.
    [3] YUAN Z, WEN Y L, LI J L, et al. Harvesting Chlorella vulgaris by magnetic flocculation using Fe3O4 coating with polyaluminium chloride and polyacrylamide[J]. Bioresource Technology,2015,198:789-796. doi: 10.1016/j.biortech.2015.09.087
    [4] YANG Z, SHANG Y, LU Y, et al. Flocculation properties of biodegradable amphoteric chitosan-based flocculants[J]. Chemical Engineering Journal,2011,172(1):287-295. doi: 10.1016/j.cej.2011.05.106
    [5] 张文轩, 杨琥, 程镕时, 等. 壳聚糖改性絮凝剂絮凝性能的研究[J]. 高分子通报, 2010(4):49-54.

    ZHANG Wenxuan, YANG Hu, CHENG Ronshi, et al. Study on flocculation performance of chitosan modified flocculant[J]. Polymer Bulletin,2010(4):49-54(in Chinese).
    [6] 邹华, 潘纲, 阮文权. 壳聚糖改性粘土絮凝除藻的机制探讨[J]. 环境科学与技术, 2007, 25(6):8-9, 13. doi: 10.3969/j.issn.1003-6504.2007.06.004

    ZOU Hua, PAN Gang, RUAN Wenquan. Mechanism of algae removal by chitosan modified clay[J]. Environmental Science and Technology,2007,25(6):8-9, 13(in Chinese). doi: 10.3969/j.issn.1003-6504.2007.06.004
    [7] 靳晓光, 张洪刚, 潘纲. 阳离子化壳聚糖改性黏土絮凝去除藻[J]. 环境工程学报, 2018, 12(9):2437-2445. doi: 10.12030/j.cjee.201803110

    JIN Xiaoguang, ZHANG Honggang, PAN Gang. Algae removal by cationic chitosan modified clay[J]. Journal of Environmental Engineering,2018,12(9):2437-2445(in Chinese). doi: 10.12030/j.cjee.201803110
    [8] GURBUZ F, CODD G A. Microcystin removal by a naturally-occurring substance: pumice[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(3): 323–327.
    [9] 张洁. 秸秆分解产物光致过氧化氢对铜绿微囊藻抑制效能研究[D]. 重庆: 重庆大学, 2016.

    ZHANG Jie. Study on the inhibition effect of straw decomposition product photoinduced hydrogen peroxide on Microcystis aeruginosa[D]. Chongqing: Chongqing University, 2016(in Chinese).
    [10] 严群, 韩冬雪, 汪宏, 等. 藻类生长期对改性蛭石絮凝除藻的影响[J]. 环境工程学报, 2017, 11(3):1621-1626. doi: 10.12030/j.cjee.201511114

    YAN Qun, HAN Dongxue, WANG Hong, et al. Effect of algae growth period on algae removal by modified vermiculite flocculation[J]. Journal of Environmental Engineering,2017,11(3):1621-1626(in Chinese). doi: 10.12030/j.cjee.201511114
    [11] 杨磊, 张高科, 汤丹丹, 等. 壳聚糖改性红壤去除铜绿微囊藻[J]. 环境工程学报, 2015, 9(8):3745-3750. doi: 10.12030/j.cjee.20150825

    YANG Lei, ZHANG Gaoke, TANG Dandan, et al. Removal of Microcystis aeruginosa from chitosan modified red soil[J]. Journal of Environmental Engineering,2015,9(8):3745-3750(in Chinese). doi: 10.12030/j.cjee.20150825
    [12] UMMALYMA S B, MATHEW A K, PANDEY A, et al. Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation[J]. Bioresource Technology,2016,213:216-221. doi: 10.1016/j.biortech.2016.03.114
    [13] VU H P, NGUYEN L N, LESAGE G, et al. Synergistic effect of dual flocculation between inorganic salts and chitosan on harvesting microalgae Chlorella vulgaris[J]. Environmental Technology & Innovation,2020,17:1-8.
    [14] PEI H Y, MA C X, HU W R, et al. The behaviors of Microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes[J]. Bioresource Technology,2014,151:314-322. doi: 10.1016/j.biortech.2013.10.077
    [15] RASHID N, REHMAN S U, HAN J I. Rapid harvesting of freshwater microalgae using chitosan[J]. Process Biochemistry,2013,48(7):1107-1110. doi: 10.1016/j.procbio.2013.04.018
    [16] CHUA E T, ELTANAHY E, JUNG H, et al. Efficient harvesting of nannochloropsis microalgae via optimized chitosan-mediated flocculation[J]. Global Challenges,2019,3(1):1-7.
    [17] PRADANA Y S, KUSUMASTUTI Y, RAHMA F N, et al. Chitosan flocculation-sedimentation for harvesting selected microalgae species grown in monoculture and mixed cultures[J]. Chemical Engineering Transactions,2017,56:1549-1554.
    [18] GREGORY J, BARANY S. Adsorption and flocculation by polymers and polymer mixtures[J]. Advances in Colloid &Interface Science,2011,169(1):1-12.
    [19] YANG R, LI H, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research,2016,95:59-89. doi: 10.1016/j.watres.2016.02.068
    [20] WANG T, YANG W L, HONG Y, et al. Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae[J]. Chemical Engineering Journal,2016,297:304-314. doi: 10.1016/j.cej.2016.03.038
    [21] YUAN Y, ZHANG H, PAN G. Flocculation of cyanobacterial cells using coal fly ash modified chitosan[J]. Water Research,2016,97:11-18. doi: 10.1016/j.watres.2015.12.003
    [22] CHENG Y S, ZHENG Y, LABAVITCH J M, et al. The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella[J]. Process Biochemistry,2011,46(10):1927-1933. doi: 10.1016/j.procbio.2011.06.021
    [23] BEACH E S, ECKELMAN M J, CUI Z, et al. Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae neochloris oleoabundans[J]. Bioresource Technology,2012,121:445-449. doi: 10.1016/j.biortech.2012.06.012
    [24] DONG C L, CHEN W, CHENG L. Flocculation of algal cells by amphoteric chitosan-based flocculant[J]. Bioresource Technology,2014,170:239-247. doi: 10.1016/j.biortech.2014.07.108
  • 加载中
图(9)
计量
  • 文章访问数:  826
  • HTML全文浏览量:  379
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 修回日期:  2021-04-07
  • 录用日期:  2021-05-11
  • 网络出版日期:  2021-05-20
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回