留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩纤维对再生混凝土抗碳化性能的影响

丁亚红 郭书奇 张向冈 徐平 武军 张美香

丁亚红, 郭书奇, 张向冈, 等. 玄武岩纤维对再生混凝土抗碳化性能的影响[J]. 复合材料学报, 2022, 39(3): 1228-1238. doi: 10.13801/j.cnki.fhclxb.20210520.002
引用本文: 丁亚红, 郭书奇, 张向冈, 等. 玄武岩纤维对再生混凝土抗碳化性能的影响[J]. 复合材料学报, 2022, 39(3): 1228-1238. doi: 10.13801/j.cnki.fhclxb.20210520.002
DING Yahong, GUO Shuqi, ZHANG Xianggang, et al. Influence of basalt fiber on the anti-carbonation performance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1228-1238. doi: 10.13801/j.cnki.fhclxb.20210520.002
Citation: DING Yahong, GUO Shuqi, ZHANG Xianggang, et al. Influence of basalt fiber on the anti-carbonation performance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1228-1238. doi: 10.13801/j.cnki.fhclxb.20210520.002

玄武岩纤维对再生混凝土抗碳化性能的影响

doi: 10.13801/j.cnki.fhclxb.20210520.002
基金项目: 国家自然科学基金(U1904188);河南省重点研发与推广专项(212102310288);河南省特种防护材料重点实验室开放课题(SZKFJJ202004);河南省高校基本科研业务费专项(NSFRF200320)
详细信息
    通讯作者:

    张向冈,博士,副教授,研究方向为再生混凝土、钢与混凝土组合结构 E-mail:xgzhang1986@126.com

  • 中图分类号: TV431+3

Influence of basalt fiber on the anti-carbonation performance of recycled aggregate concrete

  • 摘要: 采用快速碳化的方法研究了玄武岩纤维(BF)掺量和再生粗骨料(RCA)取代率对再生混凝土(RAC)抗碳化性能的影响,实测了3天、7天、14天、28天的碳化深度,对随碳化天数的增加,碳化深度与BF掺量、RCA取代率之间的关系进行了分析。结果表明,RAC的碳化与天然混凝土(NAC)类似,其碳化深度均随碳化天数的增加而增加,随着RCA取代率的增加,RAC的碳化深度先降后增,当RCA的质量取代率为50%时,RAC的抗碳化性能最佳,掺入BF可以有效地提高RAC的抗碳化性能,随着BF掺量的增加,RAC的抗碳化性能先增后减,最佳掺量为2 kg/m3。另外,采用扫描电子显微镜对BF/RAC的微观结构进行观测,结合扩散理论,揭示了碳化损伤机制。利用试验数据进行拟合,建立了BF/RAC的碳化深度模型。研究成果对今后开展BF/RAC抗碳化性能的研究及工程应用具有一定的参考价值。

     

  • 图  1  碳化试验

    Figure  1.  Carbonization test

    图  2  不同RCA取代率下BF/RAC碳化深度与碳化龄期的关系

    Figure  2.  Relationship between carbonization depth and carbonization days of BF/RAC with different RCA substitution ratios

    图  3  不同BF掺量下BF/RAC碳化深度与碳化时间的关系

    Figure  3.  Relationship between carbonization depth and carbonization days of BF/RAC with different BF contents

    图  4  碳化过程中BF/RAC的SEM图像

    Figure  4.  SEM images of BF/RAC during carbonization

    图  5  不同RCA取代率下BF/RAC碳化拟合图像

    Figure  5.  BF/RAC carbonization fitting image with different RCA substitution ratios

    图  6  BF/RAC A值的拟合图像

    Figure  6.  Fitted image of A value of BF/RAC

    表  1  玄武岩纤维(BF)性能指标

    Table  1.   Performance index of basalt fiber (BF)

    One-dimensional diameter/µmLength/mmDensity/(g·cm−3)Elongation at break/%Tensile strength/MPaElastic modulus/GPa
    1.3 18 2.65 2.7 3500 80
    下载: 导出CSV

    表  2  BF/再生混凝土 (RAC) 配合比 (kg/m3)

    Table  2.   Mixture proportion of BF/recycled aggregate concrete (RAC) (kg/m3)

    GroupCementFly ashSilica fumeSandRCA/mmNCA/mmWater-reducing
    agent
    BF
    5-1010-205-1010-20
    NAC 380 40 74 655 0 0 328 655 4.9 0
    2BF/NAC 380 40 74 655 0 0 328 655 4.9 2
    4BF/NAC 380 40 74 655 0 0 328 655 4.9 4
    6BF/NAC 380 40 74 655 0 0 328 655 4.9 6
    RAC(50%RCA) 380 40 74 655 163 327 163 327 4.9 0
    2BF/RAC(50%RCA) 380 40 74 655 163 327 163 327 4.9 2
    4BF/RAC(50%RCA) 380 40 74 655 163 327 163 327 4.9 4
    6BF/RAC(50%RCA) 380 40 74 655 163 327 163 327 4.9 6
    RAC(100%RCA) 380 40 74 655 328 655 0 0 4.9 0
    2BF/RAC(100%RCA) 380 40 74 655 328 655 0 0 4.9 2
    4BF/RAC(100%RCA) 380 40 74 655 328 655 0 0 4.9 4
    6BF/RAC(100%RCA) 380 40 74 655 328 655 0 0 4.9 6
    Notes:NAC—Natural aggregate concrete; BF—Basalt fiber; RAC—Recycled aggregate concrete; RCA—Recycled coarse aggregate; NCA—Natural coarse aggregate; 2BF/NAC, 4BF/NAC, 6BF/NAC—Mixing 2, 4, 6 kg/m3 BF into NAC, respectively; RAC(50%RCA), 2BF/RAC(50%RCA), 4BF/RAC(50%RCA), 6BF/RAC(50%RCA)—Mixing 0, 2, 4, 6 kg/m3 BF into RAC with 50% replacement ratio of RCA, respectively; RAC(100%RCA), 2BF/RAC(100%RCA), 4BF/RAC(100%RCA), 6BF/RAC(100%RCA)—Mixing 0, 2, 4, 6 kg/m3 BF into RAC with 100% replacement ratio of RCA, respectively.
    下载: 导出CSV

    表  3  BF/RAC的碳化深度

    Table  3.   Carbonization depth of BF/RAC

    Project3 Days7 Days14 Days28 Days
    NAC 5.82 6.70 7.47 8.73
    2BF/NAC 3.95 4.12 4.32 5.30
    4BF/NAC 1.83 3.43 3.82 4.77
    6BF/NAC 1.53 4.85 5.53 7.43
    RAC(50%RCA) 3.09 3.16 6.00 7.61
    2BF/RAC(50%RCA) 2.18 3.24 5.46 6.08
    4BF/RAC(50%RCA) 3.47 5.54 5.92 7.21
    6BF/RAC(50%RCA) 2.71 6.53 6.70 9.79
    RAC(100%RCA) 4.21 8.06 9.90 10.15
    2BF/RAC(100%RCA) 5.77 7.98 8.62 9.58
    4BF/RAC(100%RCA) 5.17 8.75 10.32 10.79
    6BF/RAC(100%RCA) 6.36 10.85 11.21 13.05
    下载: 导出CSV

    表  4  BF/RAC碳化深度拟合参数

    Table  4.   BF/RAC carbonization depth fitting parameters

    ProjectAR2
    NAC 1.960 0.763
    2BF/NAC 1.191 0.670
    4BF/NAC 0.997 0.936
    6BF/NAC 1.452 0.944
    RAC(50%RCA) 1.470 0.968
    2BF/RAC(50%RCA) 1.249 0.963
    4BF/RAC(50%RCA) 1.557 0.884
    6BF/RAC(50%RCA) 1.901 0.951
    RAC(100%RCA) 2.296 0.870
    2BF/RAC(100%RCA) 2.193 0.780
    4BF/RAC(100%RCA) 2.458 0.851
    6BF/RAC(100%RCA) 2.899 0.843
    Notes:A—Carbonization ratio coefficient; R2—Coefficient of determination.
    下载: 导出CSV

    表  5  BF/RAC A值的拟合参数

    Table  5.   Fitting parameters of A value of BF/RAC

    RCA substitution ratio abcR2
    0% 0.08 −0.55 1.96 0.998
    50% 0.04 −0.13 1.45 0.833
    100% 0.03 −0.10 2.29 0.981
    下载: 导出CSV

    表  6  BF/RAC碳化深度模型

    Table  6.   BF/RAC carbonization depth model

    RCA substitution ratioCarbonization depth model of BF/RAC
    0% $Y = (0.077{m^2} - 0.545m + 1.964)\sqrt x $
    50% $Y = (0.035{m^2} - 0.131m + 1.445)\sqrt x $
    100% $Y = (0.034{m^2} - 0.1m + 2.286)\sqrt x $
    下载: 导出CSV

    表  7  RAC碳化深度模型对比

    Table  7.   Comparison of carbonization depth models of RAC

    SpecimenTime/dActual valueCalculated valueCalculated value/Actual value
    This studyXiao’s model[30]Geng’s model[13]This studyXiao’s model[30]Geng’s model[13]
    NAC 3 5.82 3.37 1.31 6.50 0.58 0.23 1.12
    7 6.70 5.15 2.01 8.69 0.77 0.30 1.30
    14 7.47 7.28 2.84 11.01 0.97 0.38 1.47
    28 8.73 10.30 4.02 13.96 1.18 0.46 1.60
    RAC(50%RCA) 3 3.09 2.50 1.64 6.59 0.81 0.53 2.13
    7 3.16 3.82 2.51 8.81 1.21 0.79 2.79
    14 6.00 5.41 3.55 11.16 0.90 0.59 1.86
    28 7.61 7.65 5.02 14.15 1.00 0.66 1.86
    RAC(100%RCA) 3 4.21 3.96 1.97 6.68 0.94 0.47 1.59
    7 8.06 6.05 3.01 8.93 0.75 0.37 1.11
    14 9.90 8.55 4.26 11.31 0.86 0.43 1.14
    28 10.15 12.10 6.02 14.34 1.19 0.59 1.41
    下载: 导出CSV
  • [1] GÁLVEZ-MARTOS J, STYLES D, SCHOENBERGER H, et al. Construction and demolition waste best management practice in Europe[J]. Resources, Conservation and Recycling,2018,136:166-178. doi: 10.1016/j.resconrec.2018.04.016
    [2] 周静海, 吴迪, 赵庭钰, 等. 废弃纤维再生混凝土受压徐变及预测模型[J]. 土木与环境工程学报(中英文), 2019, 41(6):143-151.

    ZHOU Jinghai, WU Di, ZHAO Tingyu, et al. Pressure and creep characteristics of waste fiber recycled concrete and estimation model[J]. Journal of Civil and Environmental Engineering,2019,41(6):143-151(in Chinese).
    [3] TAM V W Y, SOOMRO M, EVANGELISTA A C J, et al. A review of recycled aggregate in concrete applications (2000-2007)[J]. Construction and Building Materials,2018,172:272-292. doi: 10.1016/j.conbuildmat.2018.03.240
    [4] MA Z, LIU M, TANG Q. Chloride permeability of recycled aggregate concrete under the coupling effect of freezing-thawing, elevated temperature or mechanical damage[J]. Construction and Building Materials,2020,237:117648. doi: 10.1016/j.conbuildmat.2019.117648
    [5] 黄一杰, 张宜健, 肖建庄, 等. 海水海砂再生混凝土与环氧涂层钢筋黏结性能[J]. 建筑结构学报, 2020, 41(S1):390-398.

    HUANG Yijie, ZHANG Yijian, XIAO Jianzhuang, et al. Study on bond between seawater sea sand recycled concrete and epoxy-coated steel bars[J]. Journal of Building Structures,2020,41(S1):390-398(in Chinese).
    [6] 孟二从, 余亚琳, 袁军, 等. 温度对全再生混凝土三轴受压性能及破坏准则影响[J]. 应用基础与工程科学学报, 2019, 27(6):1370-1380.

    MENG Ercong, YU Yalin, YUAN Jun, et al. Influence of temperature on the triaxial compressive behavior and failure criterion of recycled aggregate concrete[J]. Journal of Basic Science and Engineering,2019,27(6):1370-1380(in Chinese).
    [7] SOARES D, DE BRITO J, FERREIRA J, et al. Use of coarse recycled aggregates from precast concrete rejects: Mecha-nical and durability performance[J]. Construction and Building Materials,2014,71:263-272. doi: 10.1016/j.conbuildmat.2014.08.034
    [8] 任瑞. 型钢再生混凝土框架抗震性能及设计方法研究[D]. 西安: 西安建筑科技大学, 2014.

    REN Rui. Study on seismic behavior and seismic design methods of steel reinforced recycled concrete frame structure[D]. Xi’an: Xi’an University of Architecture and Technology, 2014(in Chinese).
    [9] REN R, Qi L, XUE J, et al. Cyclic bond property of steel reinforced recycled concrete (SRRC) composite structure[J]. Construction and Building Materials,2020,245:11845.
    [10] ZHU P, ZHANG X, WU J, et al. Performance degradation of the repeated recycled aggregate concrete with 70% replacement of three-generation recycled coarse aggregate[J]. Journal of Wuhan University of Technology: Materials Science,2016,31(5):989-995. doi: 10.1007/s11595-016-1480-y
    [11] WANG J, ZHANG J, CAO D, et al. Pore characteristics of recycled aggregate concrete and its relationship with durability under complex environmental factors[J]. Construction and Building Materials,2020,272(1):121642.
    [12] SILVA R V, NEVES R, DE BRITO J, et al. Carbonation behaviour of recycled aggregate concrete[J]. Cement and Concrete Composites,2015,62:22-32. doi: 10.1016/j.cemconcomp.2015.04.017
    [13] 耿欧, 张鑫, 张铖铠. 再生混凝土碳化深度预测模型[J]. 中国矿业大学学报, 2015, 44(1):54-58.

    GENG Ou, ZHANG Xin, ZHANG Chengkai. Prediction models of the carbonization depth of recycled concrete[J]. Journal of China University of Mining & Technology,2015,44(1):54-58(in Chinese).
    [14] KURDA R, DE BRITO J, SILVESTRE J D. Carbonation of concrete made with high amount of fly ash and recycled concrete aggregates for utilization of CO2[J]. Journal of CO2 Utilization,2019,29:12-19. doi: 10.1016/j.jcou.2018.11.004
    [15] 薛维培, 刘晓媛, 姚直书, 等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9):2285-2293.

    XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of diff-erent damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2020,37(9):2285-2293(in Chinese).
    [16] 丁一宁, 马跃, 郝晓卫. 基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响[J]. 复合材料学报, 2020, 37(11):2908-2916.

    DING Yining, MA Yue, HAO Xiaowei. Investigation on effect of crack geometry on permeability of fiber/concrete based on fractal theory[J]. Acta Materiae Compositae Sinica,2020,37(11):2908-2916(in Chinese).
    [17] 孙浩, 王培铭, 孙家瑛. 再生混凝土抗气渗性及抗碳化性能研究[J]. 建筑材料学报, 2006, 9(1):86-91. doi: 10.3969/j.issn.1007-9629.2006.01.016

    SUN Hao, WANG Peiming, SUN Jiaying. Study on the gas anti-permeability and carbonation resistance of recycled concrete[J]. Journal of Building Materials,2006,9(1):86-91(in Chinese). doi: 10.3969/j.issn.1007-9629.2006.01.016
    [18] 王建超, 裘子铭, 陆佳韦, 等. 废弃纤维再生混凝土碳化深度预测模型研究[J]. 硅酸盐通报, 2020, 39(5):1503-1510,1516.

    WANG Jianchao, QIU Ziming, LU Jiawei, et al. Carbonation depth prediction model of waste fiber recycled concrete[J]. Bulletin of the Chinese Ceramic Society,2020,39(5):1503-1510,1516(in Chinese).
    [19] 闫春岭, 高丹盈, 胡春生, 等. 钢纤维再生粗骨料混凝土碳化试验[J]. 土木工程与管理学报, 2017, 34(2):64-72. doi: 10.3969/j.issn.2095-0985.2017.02.015

    YAN Chunling, GAO Danying, HU Chunsheng, et al. Carbonization test of steel fiber reinforced recycled coarse aggregate concrete[J]. Journal of Civil Engineering and Management,2017,34(2):64-72(in Chinese). doi: 10.3969/j.issn.2095-0985.2017.02.015
    [20] 王艳, 牛荻涛, 苗元耀, 等. 弯曲荷载作用下钢纤维混凝土碳化性能[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(1):51-55.

    WANG Yan, NIU Ditao, MIAO Yuanyao, et al. Carbona-tion of steel fiber reinforced concrete under flexural loading[J]. Journal of Xi’an University of Architecture & Technology,2015,47(1):51-55(in Chinese).
    [21] 王占海, 杨德健. 钢纤维混凝土碳化深度影响因素及预测模型研究[J]. 天津城建大学学报, 2015, 21(4):262-266. doi: 10.3969/j.issn.1006-6853.2015.04.006

    WANG Zhanhai, YANG Dejian. Study on influencing factors and prediction model of carbonation depth of steel fiber concrete[J]. Journal of Tianjin Chengjian University,2015,21(4):262-266(in Chinese). doi: 10.3969/j.issn.1006-6853.2015.04.006
    [22] 刘玉林, 吴多, 刘思语, 等. 钢-聚丙烯纤维混凝土碳化深度预测模型算法研究[J]. 南昌工程学院学报, 2020, 39(6):54-58.

    LIU Yulin, WU Duo, LIU Siyu, et al. Study on prediction model algorithm of carbonation depth of steel-polypro-pylene fiber reinforced concrete[J]. Journal of Nanchang Institute of Technology,2020,39(6):54-58(in Chinese).
    [23] 张运华, 姚丽萍, 徐仕进, 等. 表面处理玄武岩纤维增强水泥基复合材料力学性能[J]. 复合材料学报, 2017, 34(5):1159-1166.

    ZHANG Yunhua, YAO Liping, XU Shijin, et al. Mechanical properties of cement matrix composites reinforced with surface treated basalt fibers[J]. Acta Materiae Compositae Sinica,2017,34(5):1159-1166(in Chinese).
    [24] 李为民, 许金余, 沈刘军, 等. 玄武岩纤维混凝土的动态力学性能[J]. 复合材料学报, 2008(2):135-142. doi: 10.3321/j.issn:1000-3851.2008.02.023

    LI Weimin, XU Jinyu, SHEN Liujun, et al. Dynamic mecha-nical properties of basalt fiber reinforced concrete using a split hopkinson pressure bar[J]. Acta Materiae Compo-sitae Sinica,2008(2):135-142(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.023
    [25] LI S, ZHANG Y, CHEN W, et al. Bending performance of unbonded prestressed basalt fiber recycled concrete beams[J]. Engineering Structures,2020,221:110937. doi: 10.1016/j.engstruct.2020.110937
    [26] FANG S E, HONG H S, ZHANG P H, et al. Mechanical pro-perty tests and strength formulas of basalt fiber reinforced recycled aggregate concrete[J]. Materials (Basel),2018,11(10):2-14.
    [27] LI G, ZHANG L, ZHAO F. Acoustic emission characteristics and damage mechanisms investigation of basalt fiber concrete with recycled aggregate[J]. Materials,2020,13(18):2-22.
    [28] MENG W, LIU H, LIU G, et al. Bond-slip constitutive relation between BFRP bar and basalt fiber recycled aggregate concrete[J]. KSCE Journal of Civil Engineering,2016,20(5):1996-2006. doi: 10.1007/s12205-015-0350-z
    [29] 中华人民共和国住房和城乡建设部. GB/T 50082—2009 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB/T 50082—2009 Standard for test methods of long-term performance and durability of ordinary concrete[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [30] 肖建庄, 雷斌. 再生混凝土碳化模型与结构耐久性设计[J]. 建筑科学与工程学报, 2008(3):66-72. doi: 10.3321/j.issn:1673-2049.2008.03.013

    XIAO Jianzhuang, LEI Bin. Carbonation model and structural durability design for recycled concrete[J]. Journal of Architecture and Civil Engineering,2008(3):66-72(in Chinese). doi: 10.3321/j.issn:1673-2049.2008.03.013
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  1211
  • HTML全文浏览量:  460
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 修回日期:  2021-05-10
  • 录用日期:  2021-05-11
  • 网络出版日期:  2021-05-20
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回