留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热塑性树脂基体对超高分子量聚乙烯纤维复合材料力学性能和抗弹道侵彻性能的影响

何业茂 焦亚男 周庆 陈利

何业茂, 焦亚男, 周庆, 等. 热塑性树脂基体对超高分子量聚乙烯纤维复合材料力学性能和抗弹道侵彻性能的影响[J]. 复合材料学报, 2022, 39(4): 1570-1581. doi: 10.13801/j.cnki.fhclxb.20210518.011
引用本文: 何业茂, 焦亚男, 周庆, 等. 热塑性树脂基体对超高分子量聚乙烯纤维复合材料力学性能和抗弹道侵彻性能的影响[J]. 复合材料学报, 2022, 39(4): 1570-1581. doi: 10.13801/j.cnki.fhclxb.20210518.011
HE Yemao, JIAO Ya'nan, ZHOU Qing, et al. Effects of thermoplastic resin matrix on mechanical properties and anti-penetration performance of ultra-high molecular weight polyethylene fiber composite[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1570-1581. doi: 10.13801/j.cnki.fhclxb.20210518.011
Citation: HE Yemao, JIAO Ya'nan, ZHOU Qing, et al. Effects of thermoplastic resin matrix on mechanical properties and anti-penetration performance of ultra-high molecular weight polyethylene fiber composite[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1570-1581. doi: 10.13801/j.cnki.fhclxb.20210518.011

热塑性树脂基体对超高分子量聚乙烯纤维复合材料力学性能和抗弹道侵彻性能的影响

doi: 10.13801/j.cnki.fhclxb.20210518.011
详细信息
    通讯作者:

    焦亚男,博士,研究员,研究方向为三维新型立体织物整体近净成型工艺设计与理论  E-mail:Jiaoyn@tjpu.edu.cn

  • 中图分类号: TB332

Effects of thermoplastic resin matrix on mechanical properties and anti-penetration performance of ultra-high molecular weight polyethylene fiber composite

  • 摘要: 选用热塑性的水性橡胶、水性聚酯、水性聚氨酯作为基体树脂,超高分子量聚乙烯(UHMWPE)纤维作为增强纤维,采用热压工艺制备单向正交结构的防弹先进复合材料层压板。基于弹道侵彻试验和力学试验研究热塑性树脂基体对防弹先进复合材料弹道响应及力学行为的影响。研究结果显示:相比单一的热塑性树脂体系,以热塑性树脂混合体系作为基体制备的UHMWPE复合材料具有更优异的抗弹道侵彻性能、更高的拉伸破坏强度和层间剪切破坏强度,这是由于混合树脂体系中的UHMWPE纤维具有更高的可利用效率;此外,基于横向压缩诱导的间接张力机制和弹道侵彻下的大变形行为诱导的膜力效应,UHMWPE纤维复合材料的抗弹道侵彻性能与其准静态下的拉伸断裂强度、层间剪切强度呈现正相关的关联机制。

     

  • 图  1  正交单向(UD)结构的防弹先进复合材料制备工艺路线 (a)、弹道试验及测试设备 (b)、准静态下的力学试验 (c)和弹道试验后层压板和弹丸的表面形貌 (d)

    Figure  1.  Preparation process of bulletproof advanced composites with orthogonal unidirectional (UD) structure (a), ballistic experiment and its test equipment (b), mechanical experiment under quasi-static state (c) and surface morphologies of post-impact laminate and post-impact projectiles (d)

    F1-F4—Loading

    图  2  准静态力学试验设备和试样被破坏后形貌:(a) 力学试验设备;(b) 试验样条加载示意图;(c) 样条拉伸断裂破坏、面内剪切破坏和层间剪切破坏后形貌;(d) 试样横向压缩卸载后破坏形貌;(e) 拉伸破坏后的FESEM图像;(f) 面内剪切破坏后的FESEM图像;(g) 层间剪切后接触面的FESEM图像

    Figure  2.  Quasi static mechanical test equipment and morphologies of specimen after failure: (a) Device of mechanical test; (b) Loading diagram of test spline; (c) Morphology of splines after tensile fracture, in-plane shear failure and interlaminar shear failure; (d) Failure morphology of specimens after transverse compression unloading; (e) FESEM image after tensile failure; (f) FESEM image after in-plane shear failure; (g) FESEM image of interface after interlaminar shear

    F—Loading

    图  3  准静态下UHMWPE纤维复合材料的拉伸力学性能、层间剪切力学性能和面内剪切力学性能:(a)拉伸断裂强度;(b)拉伸应力-应变曲线;(c)层间剪切破坏强度;(d)层间剪切应力-应变曲线;(e)面内剪切破坏强度;(f)面内剪切载荷-位移曲线

    Figure  3.  Tensile mechanical properties, interlaminar shear mechanical properties and in-plane shear mechanical properties of UHMWPE fiber composites under quasi-static state: (a) Tensile strength at break; (b) Tensile stress-stress curves; (c) Interlaminar shear strength at break; (d) Interlaminar shear stress-stress curves; (e) In-plane shear strength at break; (f) In-plane shear loading-displacement curves

    图  4  正交UD结构的UHMWPE纤维复合材料中纤维的利用效率和实际使用量:(a) UHMWPE纤维的利用效率;(b) UHMWPE纤维的实际使用量

    Figure  4.  Utilization efficiency and practical dosage of fibers in orthogonal UD structural UHMWPE fiber composites: (a) UHMWPE fiber utilization efficiency; (b) Practical dosage of UHMWPE fiber

    图  5  准静态下UHMWPE纤维复合材料的横向压缩力学性能:(a)横向压缩应变;((b)、(c))横向压缩应力-应变曲线

    Figure  5.  Transverse compression mechanical properties of UHMWPE fiber composites under quasi-static state: (a) Transverse compressive strain; ((b), (c)) Transverse compressive stress-stress curves

    图  6  UHMWPE纤维复合材料层压板横向压缩过程及其损伤形貌:((a1)~(a5)) 4#层压板在横向压缩载荷作用下的压缩过程;((b1)~(b5)) 1#~5#试样在横向压缩载荷卸载后的表面破坏形貌;(c1) 分层破坏;(c2) 侧表面高度云图;(c3) 单UD层纵向位移

    Figure  6.  Transverse compression process of UHMWPE fiber composite laminates and damage morphologies: ((a1)-(a5)) Compression process of 4# laminate under transverse compression load; ((b1)-(b5)) Surface failure morphology of the 1#-5# specimen after unloading under transverse compression load; (c1) Delamination failure; (c2) Height nephogram of side surface; (c3) Longitudinal displacement of single UD layer

    图  7  试验用UHMWPE纤维复合材料层压板的抗弹道侵彻性能

    Figure  7.  Anti-penetration performance of UHMWPE fiber composite laminates in experiment

    图  8  基于CT获取的弹道侵彻后UHMWPE纤维复合材料层压板的弹孔剖面形貌[25]

    Figure  8.  Bullet-hole profile morphology of post-impact UHMWPE fiber composite laminate by CT [25]

    图  9  试验用UHMWPE纤维复合材料的抗弹道侵彻性能与其准静态力学性能的相关性

    Figure  9.  Correlation between anti-penetration performance and quasi-state mechanical properties of UHMWPE fiber composite in experiment

    SMP—Specific margin percentage

    图  10  侵彻载荷作用下正交结构UHMWPE纤维复合材料层压板的瞬态阶段受力分析示意图

    Figure  10.  Force analysis diagram of cross-ply UHMWPE fiber composite laminate under penetration load in transient phase

    图  11  弹道侵彻后UHMWPE纤维复合材料层压板背衬凹陷深度与层压板厚度的关系

    Figure  11.  Relationship between back-face signature of UHMWPE fiber composite and laminate thickness after ballistic penetration

    表  1  试验用超高分子量聚乙烯(UHMWPE)纤维的物理性能

    Table  1.   Physical properties of ultra-high molecular weight polyethylene (UHMWPE) fiber used in experiment

    FiberLiner
    density/tex
    Root
    number
    Volume density/
    (g·cm−3)
    Tensile strength
    at break/MPa
    Tensile
    modulus/GPa
    Elongation
    at break/%
    AverageStandard deviationAverageStandard deviationAverageStandard deviation
    UHMWPE 115.78 380 0.97 3411.35 127.85 133.74 7.53 2.56 0.15
    下载: 导出CSV

    表  2  防弹先进复合材料2UD片材及其层压板的规格参数

    Table  2.   Specifications of 2UD sheet and its laminates of bulletproof advanced laminates

    Sample
    number
    Resin
    system
    2UD sheetLaminates for ballistic test
    Areal density of fiber/(g·m−2)Mass fraction of resin/wt%Thickness
    of spline/mm
    Areal density of
    laminate/
    (kg·m−2)
    Thickness of laminate/mm
    AvgerageStandard deviationAvgerageStandard deviationAvgerageStandard deviation
    1# WPU 125.59 3.28 15±1 0.1608 0.0066 23.10 22.31 0.31
    2# WPE 124.49 0.73 0.1499 0.0059 22.99 23.53 0.55
    3# WR-WPE-WPU 124.83 3.95 0.1551 0.0053 22.74 22.76 0.26
    4# WR-WPE 125.10 0.78 0.1553 0.0060 23.24 24.10 0.52
    5# WR-WPE 125.58 1.63 20±1 0.1592 0.0055 24.29 25.09 0.50
    Notes: WR—Waterborne rubber; WPE—Waterborne polyester; WPU—Waterborne polyurethane.
    下载: 导出CSV

    表  3  弹道试验参数

    Table  3.   Parameters of ballistic test

    Reference
    standard
    Projectile
    size/mm
    Velocity/
    (m·s−1)
    BFS/
    mm
    Mass of
    bullet/g
    Mass of
    bullet core/g
    Shooting
    distance/m
    Shooting
    angle
    Shooting
    state
    GA141—2010 Level 5 7.62×39 725±10 ≤25 8.05 3.60 15 Normal impacting Clay backing
    Note: BFS—Back-face signature.
    下载: 导出CSV

    表  4  UHMWPE纤维复合材料抗7.62 mm×39 mm软钢芯弹侵彻后的试验结果和弹丸侵彻速度

    Table  4.   Experimental results of UHMWPE fiber composite against penetration of 7.62 mm×39 mm mild-steel core projectile and impacting velocity of bullet

    Sample plate
    number
    Post-impact state
    of sample plate
    Velocity of bullet/(m·s−1)Residual thickness/mm
    Average of six roundsMinimum of six rounds
    AverageStandard deviationAverageStandard deviation
    1# NP 724.16 2.59 12.61 1.75 9.82
    2# NP 732.94 1.89 13.65 1.68 11.62
    3# NP 730.85 5.05 14.68 0.94 13.58
    4# NP 728.37 3.80 14.16 1.12 11.95
    5# NP 732.01 3.37 16.40 1.26 13.85
    Note: NP—Non-perforating.
    下载: 导出CSV
  • [1] CROUCH I G C. Body armour-New materials, new systems[J]. Defence Technology,2019,15(3):214-253.
    [2] ATTWOOD J P, RUSSELL B P, WADLEY H N G, et al. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams[J]. International Journal of Impact Engineering,2016,93:153-165. doi: 10.1016/j.ijimpeng.2016.02.010
    [3] 顾伯洪, 孙宝忠. 纺织复合材料设计[M]. 上海: 东华大学出版社, 2018: 54-55.

    GU Bohong, SUN Baozhong. Design of textile composites[M]. Shanghai: Donghua University Press, 2018: 54-55(in Chinese).
    [4] REDDY P R S, REDDY T S, SRIKANTH I, et al. Development of cost-effective personnel armour through structural hybridization[J]. Defence Technology,2020,16(6):1089-1097. doi: 10.1016/j.dt.2019.12.004
    [5] KARTIKEYA K, CHOUHAN H, AHMED A, et al. Determination of tensile strength of UHMWPE fiber-reinforced polymer composites[J]. Polymer Testing,2020,82:106293. doi: 10.1016/j.polymertesting.2019.106293
    [6] MESHI I, LEVI-SASSON A, BREIMAN U, et al. The parametric HFGMC micromechanical model for soft UHMWPE laminated composites[J]. Mechanics of Materials,2020,141:103223. doi: 10.1016/j.mechmat.2019.103223
    [7] NGUYEN L H, RYAN S, ORIFICI A C, et al. A penetration model for semi-infinite composite targets[J]. International Journal of Impact Engineering,2020,137:103438. doi: 10.1016/j.ijimpeng.2019.103438
    [8] CLINE J, LOVE B. The effect of in-plane shear properties on the ballistic performance of polyethylene composites[J]. International Journal of Impact Engineering,2020,143:103592. doi: 10.1016/j.ijimpeng.2020.103592
    [9] LASSIG T, BAGUSAT F, PFANDLER S, et al. Investigations on the spall and delamination behavior of UHMWPE composites[J]. Composite Structures,2017,182:590-597. doi: 10.1016/j.compstruct.2017.09.031
    [10] QU K, WU C Q, LIU J, et al. Ballistic performance of multi-layered aluminum and UHMWPE fibre laminate targets subjected to hypervelocity impact by tungsten alloy ball[J]. Composite Structures,2020,253:112785. doi: 10.1016/j.compstruct.2020.112785
    [11] ZULKIFLI F, STOLK J, HEISSERER U, et al. Strategic positioning of carbon fiber layers in an UHMWPE ballistic hybrid composite panel[J]. International Journal of Impact Engineering,2019,129:119-127. doi: 10.1016/j.ijimpeng.2019.02.005
    [12] LIU B G, KANDAN K, WADLEY H N G, et al. Deep penetration of ultra-high molecular weight polyethylene compo-sites by a sharp-tipped punch[J]. Journal of the Mechanics and Physics of Solids,2019,123:80-102. doi: 10.1016/j.jmps.2018.06.001
    [13] LIU B G, WADLEY H N G, DESHPANDE V S. Failure mechanism maps for ultra-high molecular weight polyethylene fibre composite beams impacted by blunt projectiles[J]. International Journal of Solids and Structures,2019,178-179:180-198. doi: 10.1016/j.ijsolstr.2019.07.001
    [14] YANG Z M, LIU J X, WANG F C, et al. Effect of fiber hybridization on mechanical performances and impact behaviors of basalt fiber/UHMWPE fiber reinforced epoxy compo-sites[J]. Composite Structures,2019,229:111434. doi: 10.1016/j.compstruct.2019.111434
    [15] WANG H X, HAZELL P J, SHANKAR K, et al. Impact behaviour of Dyneema® fabric-reinforced composites with different resin matrices[J]. Polymer Testing,2017,61:17-26. doi: 10.1016/j.polymertesting.2017.04.026
    [16] 何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展 [J]. 复合材料学报, 2021, 38(5): 1334-1347.

    HE Yemao, JIAO Yanan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1334-1347(in Chinese).
    [17] LASSIG T R, MAY M, HEISSERER U, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites[J]. Composites Part B: Engineering,2018,147:47-55. doi: 10.1016/j.compositesb.2018.04.030
    [18] 中国国家标准化管理委员会. 纤维增强塑料性能测试方法总则: GB/T 1446—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of China. Fiber-reinforced plastics composite—The generals for determination of properties: GB/T 1446—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [19] BOGETTI T A, WALTER M, STANISZEWSKI J, et al. Interlaminar shear characterization of ultra-high molecular weight polyethylene (UHMWPE) composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2017,98:105-115. doi: 10.1016/j.compositesa.2017.03.018
    [20] 中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of China. Fiber-reinforced plastics composite—Determination of compressive properties: GB/T 1448—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [21] 中华人民共和国公安部. 警用防弹衣: GA 141—2010[S]. 北京: 中国标准出版社, 2011.

    Ministry of Public Security of the PRC. Police ballistic re-sistance of body armor: GA 141—2010[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [22] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 北京: 清华大学出版社, 2013: 231-232.

    SHEN Guanlin, HU Gengkai, LIU Bin. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2013: 231-232(in Chinese).
    [23] O’MASTA M R, DESHPANDE V S, WADLEY H N G. Defect controlled transverse compressive strength of polyethylene fiber laminates[J]. International Journal of Solids and Structures,2015,52:130-149. doi: 10.1016/j.ijsolstr.2014.09.023
    [24] ATTWOOD J P, KHA-DERI S N, KARTHIKEYAN K, et al. The out-of-plane compressive response of Dyneema® composites[J]. Journal of the Mechanics and Physics of Solids,2014,70:200-226. doi: 10.1016/j.jmps.2014.05.017
    [25] 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J]. 复合材料学报, 2021, 38(5): 1455-1467.

    HE Yemao, JIAO Yanan, ZHOU Qing, et al. Ballistic performance of ultra-high molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1455-1467(in Chinese).
    [26] O’MASTA M R, CRAYTON D H, DESHPANDE V S, et al. Mechanisms of penetration in polyethylene reinforced cross-ply laminates[J]. International Journal of Impact Engineering,2015,86:249-264. doi: 10.1016/j.ijimpeng.2015.08.012
    [27] 余同希, 邱信明. 冲击动力学[M]. 北京: 清华大学出版社, 2011: 171-176.

    YU Tongxi, QIU Xinming. Impact dynamics[M]. Beijing: Tsinghua University Press, 2011: 171-176(in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1535
  • HTML全文浏览量:  714
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 修回日期:  2021-04-28
  • 录用日期:  2021-05-09
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回