留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字图像技术的纤维织物面内渗透率表征

詹明樊 王继辉 倪爱清 杨斌 李书欣 彭运松

詹明樊, 王继辉, 倪爱清, 等. 基于数字图像技术的纤维织物面内渗透率表征[J]. 复合材料学报, 2021, 38(12): 4180-4189. doi: 10.13801/j.cnki.fhclxb.20210312.008
引用本文: 詹明樊, 王继辉, 倪爱清, 等. 基于数字图像技术的纤维织物面内渗透率表征[J]. 复合材料学报, 2021, 38(12): 4180-4189. doi: 10.13801/j.cnki.fhclxb.20210312.008
ZHAN Mingfan, WANG Jihui, NI Aiqing, et al. In-plane permeability characterization of fiber fabric based on digital image technology[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4180-4189. doi: 10.13801/j.cnki.fhclxb.20210312.008
Citation: ZHAN Mingfan, WANG Jihui, NI Aiqing, et al. In-plane permeability characterization of fiber fabric based on digital image technology[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4180-4189. doi: 10.13801/j.cnki.fhclxb.20210312.008

基于数字图像技术的纤维织物面内渗透率表征

doi: 10.13801/j.cnki.fhclxb.20210312.008
基金项目: 科工局基础科研项目(JCKY2018207B204)
详细信息
    通讯作者:

    杨斌,博士,研究方向为树脂基复合材料性能及模拟仿真 E-mail:yangbin@whut.edu.cn

  • 中图分类号: TB332;TS107

In-plane permeability characterization of fiber fabric based on digital image technology

  • 摘要: 材料渗透率的表征受其结构空间离散性和求解方式准确性的严重影响。基于数字图像技术,评估了纤维织物渗透率的空间分布,并探讨了阶梯铺层对灌注工艺的影响。首先,从恒压单向注射实验的视频流中动态提取了流动前沿的流速分布和流动前沿角,通过织物渗透率与结构的关系仅一次实验便可求得纤维织物的面内局部渗透率分布;其次,利用正态分布函数拟合,建立了基于数字图像技术的纤维织物面内主方向渗透率张量的求解方法,并利用该方法研究了编织形式对渗透率的影响;最后,研究了阶梯铺层和恒定铺层对灌注过程的影响。结果表明:建立的基于数字图像技术的渗透率表征方法可以通过一次实验同时获取面内主方向上的渗透率及其空间离散型;在恒定铺层下缎纹织物渗透率随着纤维层数增大而增大,从厚铺层向薄铺层的灌注方式可以达到最优的灌注时间。

     

  • 图  1  纤维织物图片

    Figure  1.  Photographs of the fiber fabrics

    图  2  面内渗透率测试装置

    Figure  2.  Testing setup for in-plane permeability

    图  3  纤维织物阶梯铺层示意图

    Figure  3.  Schematic diagram of fiber fabrics under step ply

    图  4  渗透率计算流程图

    Figure  4.  Flow chart of permeability calculation

    T—Time

    图  5  纤维织物流动前沿示意图

    Figure  5.  Schematic diagram of the flow front of fiber fabric

    α—Flow front angle; δ—Complementary angle of the flow front angle; $\nabla $P—Pressure gradient

    图  6  缎纹织物(SF)在572 s时刻对应的灰度直方图 (a) 和流动前沿拟合图 (b)

    Figure  6.  Gray histogram (a) and fitting of flow front (b) of satin fabric (SF) at time 572 s

    图  7  SF部分时刻下的实验流动前沿及数据提取结果

    Figure  7.  Experimental flow front and data extraction results of SF at some moments

    图  8  不同各向异性程度下纤维织物流动前沿角与各向异性角关系

    Figure  8.  Relationship between flow front angle and anisotropy angle of fiber fabric under different degrees of anisotropy

    图  9  不同编织形式织物在45°方向灌注下流动拟合角随时间变化

    Figure  9.  Flow fitting angle change with time of different textiles under 45° infusion

    图  10  SF在0°方向上的渗透率云图

    Figure  10.  Permeability cloud diagram of SF in 0° direction

    图  11  SF在0°方向上流动前沿与时间拟合图

    Figure  11.  Fitting diagram of flow front and time of SF in 0° direction

    图  12  SF在0°方向上渗透率直方图

    Figure  12.  Permeability histogram of SF in 0° direction

    图  13  SF的细观结构

    Figure  13.  Mesoscopic structure of SF

    表  1  实验材料的相关参数

    Table  1.   Related parameters of experimental materials

    MaterialTypeAreal weight/(g·m−2)Density/(kg·m−3)
    Vinyl resin ATLAC 430 LV 1100
    Satin fabric 220 2550
    Twill fabric 2/2 Twill 327 2550
    Biaxial fabric EKB450 455 2550
    Biaxial fabric EKB424 424 2550
    下载: 导出CSV

    表  2  纤维织物的面内渗透率结果

    Table  2.   In-plane permeability results of fiber fabric

    Textileα/(°)K45°/10−11 m2K1/10−11 m2K2/10−11 m2β
    SF 86 2.386 2.565 2.230 0.869
    Twill 78 0.521 0.662 0.430 0.649
    EKB450 74 0.990 1.387 0.769 0.554
    EKB424 58 9.544 25.442 5.874 0.231
    Notes: K45°—Permeability of the fabric in 45° direction; K1—Permeability of the fabric in the fastest direction; K2—Permeability of fabric in the slowest direction; β—Degree of anisotropy.
    下载: 导出CSV

    表  3  SF在均一铺层与阶梯铺层下渗透率对比

    Table  3.   Comparison of permeability of SF under uniform ply and step ply

    TextileNumber of
    layers
    Thickness/
    mm
    Average layer
    thickness/mm
    Vf/%KU/(10−11 m2)σ/(10−11 m2)KS/(10−11 m2)σ/(10−11 m2)
    SF 2 0.331 0.1655 52.13 2.490 0.451 4.363 0.829
    3 0.525 0.1750 49.30 2.613 0.424 3.586 0.663
    4 0.723 0.1808 47.73 2.691 0.487 2.998 0.874
    5 0.922 0.1844 46.79 2.773 0.513 2.775 0.730
    Notes: Vf—Fiber volume fraction; KU—Permeability under uniform ply; KS—Permeability under step ply; σ—Standard deviation.
    下载: 导出CSV
  • [1] 武卫莉, 陈丰雨. 真空辅助树脂灌注法制备风电叶片树脂的渗透及缺陷[J]. 复合材料学报, 2019, 36(12):2779-2785.

    WU Weili, CHEN Fengyu. Resin permeation and defects of wind turbine blades prepared by vacuum assisted resin infusion method[J]. Acta Materiae Compositae Sinica,2019,36(12):2779-2785(in Chinese).
    [2] 赵安安, 王林文, 王浩军, 等. 复合材料液体成型技术的航空应用[J]. 工程塑料应用, 2018, 46(4):145-150.

    ZHAO Anan, WANG Linwen, WANG Haojun, et al. Application of liquid composite molding technology on aeronautics[J]. Engineering Plastics Applications,2018,46(4):145-150(in Chinese).
    [3] KONSTANTOPOULOS S, HUEBER C, ANTONIADIS I, et al. Liquid composite molding reproducibility in real-world production of fiber reinforced polymeric composites: A review of challenges and solutions[J]. Advanced Manufacturing: Polymer & Composites Science,2019,5(3):85-99.
    [4] 杨旭静, 王跃飞, 韦凯, 等. 基于孔隙控制的车身结构树脂传递模塑成型工艺设计[J]. 复合材料学报, 2017, 34(5):970-977.

    YANG Xujing, WANG Yuefei, WEI Kai, et al. Design of resin transfer molding process for vehicle body structure based on porosity control[J]. Acta Materiae Compositae Sinica,2017,34(5):970-977(in Chinese).
    [5] SIRTAUTAS J, PICKETT A K, GEORGE A. Materials characterisation and analysis for flow simulation of liquid resin infusion[J]. Applied Composite Materials,2014,22(3):1-19.
    [6] NAIK N K, SIRISHA M, INANI A. Permeability characterization of polymer matrix composites by RTM/VARTM[J]. Progress in Aerospace Sciences, 2014, 65: 22-40.
    [7] MAY D, AKTAS A, ADVANI S G, et al. In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise[J]. Composites Part A: Applied Science and Manufacturing,2019,121:100-114. doi: 10.1016/j.compositesa.2019.03.006
    [8] RUIZ E, VERNET N, ADVANI S. Experimental determination of the permeability of engineering textiles: Benchmark II[J]. Composites Part A: Applied Science and Manufacturing,2014,61:172-184. doi: 10.1016/j.compositesa.2014.02.010
    [9] DEMARIA C, RUIZ E, TROCHU F. In-plane anisotropic permeability characterization of deformed woven fabrics by unidirectional injection. Part I: Experimental results[J]. Polymer Composites,2007,28(6):797-811. doi: 10.1002/pc.20107
    [10] FAUSTER E, BERG D C, MAY D, et al. Robust evaluation of flow front data for in-plane permeability characterization by radial flow experiments[J]. Advanced Manufacturing: Polymer & Composites Science,2018,4(1):24-40.
    [11] 张嘉阳, 刘刚, 李龙, 等. 国产CCF300碳纤维单向织物液体成型工艺性及其复合材料力学性能[J]. 复合材料学报, 2016, 33(1):17-26.

    ZHANG Jiayang, LIU Gang, LI Long, et al. Processability of domestic CCF300 carbon fiber unidirectional fabrics for liquid molding and mechanical properties of their compo-sites[J]. Acta Materiae Compositae Sinica,2016,33(1):17-26(in Chinese).
    [12] FERLAND P, GUITTARD D, TROCHU F. Concurrent methods for permeability measurement in resin transfer molding[J]. Polymer Composites, 1996, 17(1): 149-158.
    [13] PIERCE R S, FALZON B G, THOMPSON M C. Permeability characterization of sheared carbon fiber textile preform[J]. Polymer Composites,2018,39(7):2287-2298. doi: 10.1002/pc.24206
    [14] COSSON B. Optical measurement of local permeability of flax fiber fabrics before liquid composite molding[J]. Journal of Composite Materials,2018,52(24):3289-3297. doi: 10.1177/0021998318764579
    [15] 耿奕, 蒋金华, 陈南梁. 经编四轴向玻璃纤维织物的渗透行为和渗透率[J]. 纺织学报, 2017, 38(10):49-56.

    GENG Yi, JIANG Jinhua, CHEN Nanliang. Permeation behavior and permeability of warp-knitted quadri-axial glass fiber fabric[J]. Journal of Textile Research,2017,38(10):49-56(in Chinese).
    [16] 方良超. 嵌套效应对织物压缩性及渗透性的影响研究[D]. 西安: 西北工业大学, 2016.

    FANG Liangchao. Effect of nesting on compaction and permeability properties of fabrics[D]. Xi’an: Northwestern Polytechnical University, 2016(in Chinese).
    [17] PEARCE N, SUMMERSCALES J. The compressibility of a reinforcement fabric[J]. Composites Manufacturing,1995,6(1):15-21. doi: 10.1016/0956-7143(95)93709-S
    [18] 周莉莉. 实时监测技术在LCM工艺上的应用研究[D]. 上海: 东华大学, 2009.

    ZHOU Lili. Application of real-time sensing and monitoring in LCM process[D]. Shanghai: Donghua University, 2009(in Chinese).
    [19] 武红玉. 阈值分割算法在图像处理中的应用[J]. 科技信息, 2012(27):201-202.

    WU Hongyu. Application of threshold segmentation algorithm in image processing[J]. Science and Technology Information,2012(27):201-202(in Chinese).
    [20] 孔凡胜, 王竹林, 高伟伟. 某型检测系统图像信息噪声处理研究[J]. 计算机与数字工程, 2014, 42(8):1484-1487.

    KONG Fansheng, WANG Zhulin, GAO Weiwei. Noise information processing of some detection system[J]. Computer and Digital Engineering,2014,42(8):1484-1487(in Chinese).
    [21] FRATTA C D, KOUTSOUKIS G, KLUNKER F, et al. Characterization of anisotropic permeability from flow front angle measurements[J]. Polymer Composites,2016,37(7):2037-2052. doi: 10.1002/pc.23382
    [22] BARIS C, DAMIANO S, MURAT S E, et al. In-plane permeability distribution mapping of isotropic mats using flow front detection[J]. 2018, 113: 275-286.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1050
  • HTML全文浏览量:  497
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 录用日期:  2021-03-04
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回