留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WO3/g-C3N4复合光催化剂制备及其可见光催化性能

黄有鹏 吴福礼 李兵 杨本宏

黄有鹏, 吴福礼, 李兵, 等. WO3/g-C3N4复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(12): 4265-4272. doi: 10.13801/j.cnki.fhclxb.20210303.001
引用本文: 黄有鹏, 吴福礼, 李兵, 等. WO3/g-C3N4复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(12): 4265-4272. doi: 10.13801/j.cnki.fhclxb.20210303.001
HUANG Youpeng, WU Fuli, LI Bing, et al. Preparation and visible light catalytic performance of WO3/g-C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4265-4272. doi: 10.13801/j.cnki.fhclxb.20210303.001
Citation: HUANG Youpeng, WU Fuli, LI Bing, et al. Preparation and visible light catalytic performance of WO3/g-C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4265-4272. doi: 10.13801/j.cnki.fhclxb.20210303.001

WO3/g-C3N4复合光催化剂制备及其可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20210303.001
基金项目: 国家自然科学基金(51403048);合肥学院研究生创新研究项目(CX201906)
详细信息
    通讯作者:

    杨本宏,博士,教授,硕士生导师,研究方向为光催化材料合成与应用  E-mail:yangbh@hfuu.edu.cn

  • 中图分类号: O643.3

Preparation and visible light catalytic performance of WO3/g-C3N4 composite photocatalyst

  • 摘要: 将自制层状石墨相氮化碳(g-C3N4)和WO3纳米片均匀混合,经煅烧制备WO3/g-C3N4复合半导体。利用XRD、SEM、TEM、UV-Vis DRS和PL对其进行表征。结果表明,g-C3N4呈现类石墨烯状片层结构,WO3为纳米片状结构,且分散在g-C3N4表面;与WO3复合后,UV-Vis吸收边发生了红移,拓宽了g-C3N4对可见光的响应。以罗丹明B(RhB)为模拟污染物,考察WO3/g-C3N4的光催化降解性能。WO3/g-C3N4质量比为1∶5时,表现出最佳的光催化活性,可见光照60 min后,RhB降解率可达到94.9%。光催化剂具有良好的稳定性,重复使用6次后,RhB的降解率依然达到88.9%。光催化机制研究表明,超氧自由基(·O2)是光催化降解RhB的主要活性物种。

     

  • 图  1  g-C3N4、WO3和WO3/g-C3N4的XRD图谱

    Figure  1.  XRD patterns of g-C3N4, WO3 and WO3/g-C3N4 composites

    图  2  g-C3N4 (a)、WO3 (b)、WO3/g-C3N4 (c) 的SEM图像和WO3/g-C3N4的HR-TEM图像(d)

    Figure  2.  SEM images of g-C3N4 (a), WO3 (b), WO3/g-C3N4 (c) and HR-TEM image of WO3/g-C3N4 (d)

    图  3  g-C3N4、WO3和WO3/g-C3N4的UV-Vis DRS谱图

    Figure  3.  Uv-Vis DRS spectra of g-C3N4, WO3 and WO3/g-C3N4

    图  4  g-C3N4、WO3和WO3/g-C3N4的PL图谱

    Figure  4.  PL spectra of g-C3N4, WO3 and WO3/g-C3N4 composite

    图  5  g-C3N4、WO3和不同质量比WO3/g-C3N4对RhB的光降解曲线 (a) 和误差棒图 (b)

    Figure  5.  Photodegradation curves (a) and error bar chart (b) of RhB by g-C3N4, WO3 and WO3/g-C3N4 with different mass ratios

    图  6  不同光照时间RhB溶液的HPLC色谱图

    Figure  6.  HPLC chromatograms of different RhB solutions under different illumination time

    图  7  不同光照时间RhB溶液的UV-Vis谱图

    Figure  7.  UV-Vis spectra of different RhB solutions under different illumination time

    图  8  WO3/g-C3N4重复使用次数对RhB降解率的影响

    Figure  8.  Effect of repeated use of WO3/g-C3N4 on RhB degradation rate

    图  9  WO3/g-C3N4光催化剂使用前后的XRD图谱

    Figure  9.  XRD patterns of WO3/g-C3N4 photocatalyst before and after use

    图  10  活性物质捕获剂对RhB降解率的影响

    Figure  10.  Effect of active substance capture agent on RhB degradation rate

    EDTA—Ethylene diamine tetraacetic acid; TBA—Tert butanol; BQ—P-benzoquinone

    图  11  WO3/g-C3N4复合光催化剂的电荷转移和分离示意图

    Figure  11.  Schematic diagram of charge transfer and separation of WO3/g-C3N4 composite photocatalyst

    表  1  石墨相氮化碳(g-C3N4)复合材料质量比参数

    Table  1.   Mass ratio parameters of graphite phases carbon nitride (g-C3N4) composites

    SampleMass ratio of WO3 to g-C3N4WO3/g
    5%WO3/g-C3N4 5∶100 0.005
    10%WO3/g-C3N4 10∶100 0.010
    15%WO3/g-C3N4 15∶100 0.015
    20%WO3/g-C3N4 20∶100 0.020
    25%WO3/g-C3N4 25∶100 0.025
    下载: 导出CSV
  • [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38. doi: 10.1038/238037a0
    [2] LIU Y, JI H W, ZHOU D F, et al. Controllable synthesis and photocatalytic activity of TiO2 /LaFeO3 micro-nanofibers[J]. Chemical Journal of Chinese Universities,2014,35(1):19-25.
    [3] WATANBE A, KOTAKE K, KAMATE K, et al. Photoelectrochemical behavior of self-assembled Ag/Co plasmonic nanostructures capped with TiO2[J]. The Journal of Physical Chemistry Letters,2014,5(1):25-29. doi: 10.1021/jz402320p
    [4] ZHANG L Z, ZHENG Z, YU J C. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J]. Chemistry of Materials,2003,15(11):2280-2286. doi: 10.1021/cm0340781
    [5] WANG M, JU P, LI J J, et al. Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting[J]. Sustainable Chemistry,2017,5(9):7878-7886.
    [6] SU Q, SUN J, WANG J Q, et al. Urea-derived graphitic carbon nitride as an efficient hetero geneous catalyst for CO2 conversion into cyclic carbonates[J]. Catalysis Science & Technology,2014,4:1556. doi: 10.1039/c3cy00921a
    [7] WANG X C, MAEDA K, THOMAS A. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2009,8:76-80. doi: 10.1038/nmat2317
    [8] IQBAL W, DONG C Y, XING M Y, et al. Eco-friendly one-potsyn thesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity[J]. Catalysis Science & Technology,2017,7:1726. doi: 10.1039/C7CY00286F
    [9] TONDA S, KUMAR S, KANDULA S, et al. Fe-doped and mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight[J]. Journal of Materials Chemistry A,2014,2(19):6772. doi: 10.1039/c3ta15358d
    [10] FU J, TIAN Y, CHANG B, et al. BiOBr-carbon nitride heterojunctions: Synthesis enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry A,2012,22(39):21159-21166. doi: 10.1039/c2jm34778d
    [11] ADHIKARI S, HE Y K. Heterojunction C3N4/MoO3 microcomposite for highly efficient photocatalytic oxidation of Rhodamine B[J]. Applied Surface Science,2020,511(5):145595.
    [12] CHENG C, SHI J W, HU Y C, et al. WO3/g-C3N4 composites: One-pot preparation and enhanced photocatalytic H2 production under visible light irradiation[J]. Nanotechnology,2017,28(16):164002. doi: 10.1088/1361-6528/aa651a
    [13] XU H T, XIAO R, HUANG J R, et al. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production[J]. Chinese Journal of Catalysis,2020,42(1):107-114.
    [14] CHEN S, HU Y, MENG S, FU X. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4/WO3[J]. Applied Catalysis B: Environmental,2014,150:564-573.
    [15] KE D N, LIU H J, PENG T Y, et al. Preparation and photo catalytic activity of WO3/TiO2 nanocomposite particles[J]. Materials Letters,2008,62(3):447-450. doi: 10.1016/j.matlet.2007.05.060
    [16] NOGUEIRA H I S, CAVALEIRO A M V, ROCHA J, et al. Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids[J]. Materials Research Bulletin,2004,39(4):683-693.
    [17] BALAZSI C, PFEIFER J. Development of tungsten oxide hydrate phasesduring precipitation, room temperature ripening and hydrothermal treatment[J]. Solid State Ionics,2002,151(1):353-358.
    [18] JANAKY C, RAJESHWAR K, TACCONI N R, et al. Tungsten-based oxide semiconductors for solar hydrogen generation[J]. Catalysis Today,2013,199(1):53-64.
    [19] DONG F, LI Y H, WANG Z Y, et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation[J]. Applied Surface Science,2015,358(1):393-403.
    [20] SZILAGYI I M, FORIZS B, ROSSELE O, et al. WO3 photocatalysts: Influence of structure and composition[J]. Journal of Catalysis,2012,294:119-127. doi: 10.1016/j.jcat.2012.07.013
    [21] ZHOU X J, SHAO C L, YANG S, et al. Heterojunction of g-C3N4/BiOI immobilized on flexible electrospun poly-acrylonitrile nanofibers: Facile preparation and enhanced visible photocatalytic Activity for floating photocatalysis[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):2316-2323.
    [22] SINGH J, ARORA A, BASU S. Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light[J]. Journal of Alloys and Compounds,2019,808:151734. doi: 10.1016/j.jallcom.2019.151734
    [23] HUANG L Y, XU H, LI Y P, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Transactions,2013,42(24):8606-8616. doi: 10.1039/c3dt00115f
    [24] LIU H, JIN Z T, XU Z Z, et al. Fabrication of ZnIn2 S4-g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants[J]. RSC Advances,2015,5(119):97951-97961. doi: 10.1039/C5RA17028A
    [25] HAI B T, BUI T H, SCHINDRA K R, et al. H2O2-assisted photocatalysis for removal of natural organic matter using nanosheet C3N4-WO3 composite under visible light and the hybrid system with ultrafiltration[J]. Chemical Engineering Journal,2020,399:125733. doi: 10.1016/j.cej.2020.125733
    [26] ZHU B C, XIA P F, HO W K, et al. Isoelectric point and adsorption activity of porous g-C3N4[J]. Applied Surface Science,2015,344:188-189. doi: 10.1016/j.apsusc.2015.03.086
    [27] LI X X, WAN T, QIU J Y, et al. In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites: A pseudo-zero-order rather than a first-order process[J]. Applied Catalysis: Environmental,2017,217:591-602. doi: 10.1016/j.apcatb.2017.05.086
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1576
  • HTML全文浏览量:  621
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 录用日期:  2021-02-12
  • 网络出版日期:  2021-03-03
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回