留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维角度对变角度层合板减振性能的影响

李亮 王显峰 赵聪 居相文 王东立 于肖

李亮, 王显峰, 赵聪, 等. 纤维角度对变角度层合板减振性能的影响[J]. 复合材料学报, 2021, 38(11): 3693-3703. doi: 10.13801/j.cnki.fhclxb.20210301.001
引用本文: 李亮, 王显峰, 赵聪, 等. 纤维角度对变角度层合板减振性能的影响[J]. 复合材料学报, 2021, 38(11): 3693-3703. doi: 10.13801/j.cnki.fhclxb.20210301.001
LI Liang, WANG Xianfeng, ZHAO Cong, et al. Influences of fiber angle on the vibration damping performance of variable angle laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3693-3703. doi: 10.13801/j.cnki.fhclxb.20210301.001
Citation: LI Liang, WANG Xianfeng, ZHAO Cong, et al. Influences of fiber angle on the vibration damping performance of variable angle laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3693-3703. doi: 10.13801/j.cnki.fhclxb.20210301.001

纤维角度对变角度层合板减振性能的影响

doi: 10.13801/j.cnki.fhclxb.20210301.001
基金项目: 装备发展部装备预研共用技术(41422010403);国家自然科学基金青年基金(52005257);江苏省自然科学基金青年基金(BK20190425)
详细信息
    通讯作者:

    王显峰,博士,副教授,硕士生导师,研究方向为先进复合材料自动化成型技术 E-mail:wangxf@nuaa.edu.cn

  • 中图分类号: TB330.1

Influences of fiber angle on the vibration damping performance of variable angle laminates

  • 摘要: 自动铺丝技术可以实现复杂曲率曲线铺放,可极大提高角度设计的自由度。本文以改善复合材料层合板动态特性为目的,对变角度层合板的减振性能进行了研究分析。首先对不同角度变化变角度层合板进行自由衰减试验,研究了纤维角度变化与变角度层合板阻尼比的关系。然后对含相应角度变角度夹层板进行随机试验,研究了层合板随机激励条件下的振动响应,并采用共振峰处传递函数(Transition function,TF)和拾振点加速度总均方根(Root mean square,RMS)两种指标评价减振效果。结果表明:层合板阻尼比在纤维变化角度为±<45|60>时最大,纤维变化角度为±<73|88>时最小。基于RMS减振评价指标,±<45|60>夹层板较传统直线板减振性能提高27.13%;基于共振峰TF减振评价指标,纤维角度变化对不同共振峰减振效果规律差异明显。研究表明,变角度层合板减振性能明显优于传统直线层合板,相关实验结果将对变角度层合板减振设计及优化提供一定的参考意义。

     

  • 图  1  纤维曲线铺放参考路径

    Figure  1.  Reference path of fiber curve laying

    图  2  EM118碳纤维增强树脂预浸料固化工艺曲线

    Figure  2.  Curing process curves of EM118 carbon fiber reinforced resin prepreg

    图  3  软件界面

    Figure  3.  Software interface

    图  4  连续铺层±<45|60>的铺放中心轨迹线

    Figure  4.  Laying center trajectory of continuous laying ±<45|60>

    图  5  8丝数EM118碳纤维增强树脂预浸料窄丝(3.175 mm)自动铺放

    Figure  5.  Automated fiber placement of 8-thread EM118 carbon fiber reinforced resin prepreg narrow tow (3.175 mm)

    图  6  EM118碳纤维增强树脂变角度层合板

    Figure  6.  EM118 carbon fiber reinforced resin variable angle laminates

    图  7  变角度层合板拾振点和激振点

    Figure  7.  Acceptance point and excitation point of variable angle laminate

    图  8  不同EM118碳纤维增强树脂曲线层合板的自由衰减曲线

    Figure  8.  Free vibration attenuation curves of EM118 carbon fiber reinforced resin laminated plates with different curves

    图  9  EM118碳纤维增强树脂变角度层合板阻尼比与纤维角度的关系

    Figure  9.  Relation between the damping ratio of EM118 carbon fiber reinforced resin variable angle laminate and the fiber angle

    图  10  含±<0|15>EM118碳纤维增强树脂变角度夹层板加速度响应的传递函数

    Figure  10.  Acceleration response transfer function of EM118 carbon fiber reinforced resin variable angle sandwich laminate with ±<0|15>

    图  11  含±<15|30>EM118碳纤维增强树脂变角度夹层板加速度响应的传递函数

    Figure  11.  Acceleration response transfer function of EM118 carbon fiber reinforced resin variable angle sandwich laminate with ±<15|30>

    图  12  含±<30|45>EM118碳纤维增强树脂变角度夹层板加速度响应的传递函数

    Figure  12.  Acceleration response transfer function of EM118 carbon fiber reinforced resin variable angle sandwich laminate with ±<30|45>

    图  13  含±<45|60>EM118碳纤维增强树脂变角度夹层板加速度响应的传递函数

    Figure  13.  Acceleration response transfer function of EM118 carbon fiber reinforced resin variable angle sandwich laminate with ±<45|60>

    图  14  含±<60|75>EM118碳纤维增强树脂变角度夹层板加速度响应的传递函数

    Figure  14.  Acceleration response transfer function of EM118 carbon fiber reinforced resin variable angle sandwich laminate with ±<60|75>

    图  15  含±<73|88>EM118碳纤维增强树脂变角度夹层板加速度响应的传递函数

    Figure  15.  Acceleration response transfer function of EM118 carbon fiber reinforced resin variable angle sandwich laminate with ±<73|88>

    图  16  EM118碳纤维增强树脂变角度层合板自由衰减实验与随机激励实验结果对比

    Figure  16.  Comparison of results between free decay experiment and random excitation experiment of EM118 carbon fiber reinforced resin variable angle laminates

    表  1  EM118碳纤维增强树脂预浸料的弹性基础参数

    Table  1.   Elastic fundation parameters of EM118 carbon fiber reinforced resin prepreg

    E1/GPaE2/GPaG12/GPaG13/GPaG23/GPa${v_{12}}$
    140 7.50 3.69 3.69 2.77 0.27
    下载: 导出CSV

    表  2  EM118碳纤维增强树脂复合材料变角度层合板阻尼比

    Table  2.   Damping ratio of EM118 carbon fiber reinforced resin variable angle composite laminates

    Fiber curve composite laminateDamping ratio ζ/%
    [±<0|15>]2s 1.588
    [±<15|30>]2s 1.440
    [±<30|45>]2s 1.161
    [±<45|60>]2s 1.775
    [±<60|75>]2s 1.381
    [±<73|88>]2s 1.056
    下载: 导出CSV

    表  3  EM118碳纤维增强树脂变角度层合板随机激励测点加速度响应共振峰值处传递函数值及减振效果

    Table  3.   Value of transfer function and vibration reduction effect at the resonance peak of the acceleration response of the random excitation measuring point of EM118 carbon fiber reinforced resin variable angle laminates

    Composite layer sequenceNear 48 HzNear 90 HzNear 158 Hz
    Transition functionVibration reduction effect/%Transition functionVibration reduction effect/%Transition functionVibration reduction effect/%
    [45/−45/0/90]s 120.747 28.873 185.817
    [±45/±<0|15>]s 39.817 67.02 101.510 −251.57 89.800 51.67
    [±45/±<15|30>]s 67.944 43.73 47.002 −62.79 171.014 7.97
    [±45/±<30|45>]s 118.434 1.92 110.382 −282.30 25.029 86.53
    [±45/±<45|60>]s 37.043 69.32 20.034 30.61 9.504 94.89
    [±45/±<60|75>]s 105.821 12.36 25.855 10.45 77.399 58.35
    [±45/±<73|88>]s 255.780 −111.83 47.988 −66.20 185.373 0.24
    下载: 导出CSV

    表  4  EM118碳纤维增强树脂变角度层合板随机激励测点响应加速度均方根值及减振效果

    Table  4.   Random excitation measuring point response acceleration RMS and vibration reduction effect of EM118 carbon fiber reinforced resin variable angle laminates

    Composite layer sequenceRoot mean square/gVibration reduction effect/%
    [45/−45/0/90]s 0.3284
    [±45/±<0|15>]s 0.2816 14.25
    [±45/±<15|30>]s 0.2893 11.91
    [±45/±<30|45>]s 0.3008 8.40
    [±45/±<45|60>]s 0.2393 27.13
    [±45/±<60|75>]s 0.2944 10.35
    [±45/±<73|88>]s 0.3819 −16.29
    下载: 导出CSV

    表  5  不同EM118碳纤维增强树脂变角度层合板相对刚度和相对质量

    Table  5.   Relative stiffness and relative mass of EM118 carbon fiber reinforced resin laminated plates with different variable angles

    Composite layer
    sequence
    NumberRelative stiffnessRelative massRelative dampingRelative stiffness
    to mass ratio
    [45/−45/0/90]s CFRP-T1 1 1 1 1
    [±45/±<0|15>]s CFRP-VS1 0.884 1.006 1.490 0.879
    [±45/±<15|30>]s CFRP-VS2 0.622 0.993 1.348 0.626
    [±45/±<30|45>]s CFRP-VS3 1.031 1.011 1.087 1.020
    [±45/±<45|60>]s CFRP-VS4 0.663 1.004 1.662 0.660
    [±45/±<60|75>]s CFRP-VS5 1.039 0.997 1.293 1.042
    [±45/±<73|88>]s CFRP-VS6 0.949 0.990 0.989 0.959
    下载: 导出CSV
  • [1] SABA N, JAWAID M, ALOTHMAN OY, et al. A review on dynamic mechanical properties of natural fibre reinforced polymer composites[J]. Construction and Building Materials,2016(106):149-159.
    [2] 肖军, 李勇, 李建龙. 自动铺放技术在大型飞机复合材料结构件制造中的应用[J]. 航空制造技术, 2008(1):50-53. doi: 10.3969/j.issn.1671-833X.2008.01.009

    XIAO Jun, LI Yong, LI Jianlong. Application of automatic fiber placement in manufacture of composite structures in large aircraft[J]. Aeronautical Manufacturing Technology,2008(1):50-53(in Chinese). doi: 10.3969/j.issn.1671-833X.2008.01.009
    [3] AKHAVAN H, RIBEIRO P. Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers[J]. Composite Structures,2011,93(11):3040-3047. doi: 10.1016/j.compstruct.2011.04.027
    [4] 尹先桃, 漆文凯. 变刚度复合材料层合板阻尼性能优化[C]. 中国航空学会第八届航空发动机可靠性学术交流, 2015: 459-463.

    YIN Xiantao, QI Wenkai. Research on damping properties optimization of variable-stiffness plate[C]. Journal of Physics Conference Series, 2015: 459-463 (in Chinese).
    [5] 孔斌, 顾杰斐, 陈普会, 等. 变刚度复合材料结构的设计、制造与分析[J]. 复合材料学报, 2017, 34(10):2121-2133.

    KONG Bin, GU Jiefei, CHEN Puhui, et al. Design, manufacture and analysis of variable stiffness composite structures[J]. Journal of Composite Materials,2017,34(10):2121-2133(in Chinese).
    [6] ABDALLA M, SETOODHE S, GRDAL Z. Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters[J]. Computers & Strutures,2008,86(9):870-878.
    [7] 聂国隽, 朱佳瑜. 纤维曲线铺放的复合材料层合板的自由振动分析[J]. 力学季刊, 2016, 37(2):274-283.

    NIE Guojun, ZHU Jiayu. Free vibration analysis of composite laminates with curvilinear fibers[J]. Chinese Quarterly of Mechanics,2016,37(2):274-283(in Chinese).
    [8] 孙士平, 邓同强, 胡政. 丝束变角度层合板频率性能的参数化分析与优化[J]. 玻璃钢/复合材料, 2016, 8:27-32.

    SUN Shiping, DENG Tongqiang, HU Zheng. Par ametric analysis and optimization of frequency property of variable angle tow laminates[J]. Fiber Reinforced Plastics/Composites,2016,8:27-32(in Chinese).
    [9] 欧阳小穗, 刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报, 2018, 39(3):221539.

    OUTANG X S, LIU Y. Panel flutter of variable stiffness composite laminates in supersonic flow[J]. Acta Aeronautica et Astronautica Sinica,2018,39(3):221539(in Chinese).
    [10] TREVISO A, VAN GENECHTEN B, MUNDO D, et al. Damping in composite materials: Properties and models[J]. Composites Part B: Engineering,2015,78:144-152. doi: 10.1016/j.compositesb.2015.03.081
    [11] TANG X, YAN X. A review on the damping properties of fiber reinforced polymer composites[J]. Journal of Industrial Textiles,2020,49(6):693-721.
    [12] PEREIRA D A, GUIMARÃES T A M, RESENDE H B, et al. Numerical and experimental analyses of modal frequency and damping in tow-steered CFRP laminates[J]. Composite Structures,2020,244(4):112190.
    [13] PEREIRA D A, SALES T P, RADE D A. Multi-objective frequency and damping optimization of tow-steered composite laminates[J]. Composite Structures,2020,256:112932.
    [14] GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations variable stiffness concept[J]. AIAA Journal,1993,31(4):751-758. doi: 10.2514/3.11613
    [15] GÜRDAL Z, TATTING B F, WU C K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing,2008,39(5):911-922. doi: 10.1016/j.compositesa.2007.11.015
    [16] 漆文凯, 程博. 复合材料层合板阻尼预测分析与验证[J]. 振动测试与诊断, 2013, 33(6):1049-1053.

    QI Wenkai, CHENG Bo. Predictive analysis and verification of damping for composite laminates[J]. Journal of Vibration, Measurement & Diagnosis,2013,33(6):1049-1053(in Chinese).
    [17] DHIKARI S, WOODHOUSE J. Identification of damping: Part1, Viscous damping[J]. Journal of Sound and Vibration,2001,243(1):43-61. doi: 10.1006/jsvi.2000.3391
    [18] 李晖, 孙伟, 常永乐, 等. 具有振幅依赖性的纤维增强复合薄板非线性阻尼的时域测试方法[J]. 振动与冲击, 2018, 37(5): 169-174.

    LI Hui, SUN Wei, CHANG Yongle, et al. Time domain test method for nonlinear damping of a fiber-reinforced composite thin plate with amplitude dependence. Journal of Vibration and Shock [J], 2018, 37(5): 169-174. (in Chinese).
    [19] FALCÓ O, MAYUGO J A, LOPES C S, et al. Variable-stiffness composite panels: As-manufactured modeling and its influence on the failure behavior[J]. Composites Part B: Engineering,2014,56:660-669. doi: 10.1016/j.compositesb.2013.09.003
    [20] PEETERS D M J, LOZANO G G, ABDALLA M M. Effect of steering limit constraints on the performance of variable stiffness laminates[J]. Computers & Structures,2018,196:94-111.
    [21] REDDY J N. Mechanics of laminated composite plates and shells: theory and analysis [M]. Boca Raton: CRC Press, 2004: 81-376.
    [22] 刘建良, 梅志远, 唐宇航, 等. 几种典型复合材料板振动特性综合对比分析及设计规律研究[J]. 振动与冲击, 2019, 38(15):65-72.

    LIU Jianliang, MEI Zhiyuan, TANG Yuhang, et al. Comprehensive comparative analysis for vibration characteristics of several typical composite panels and their design law[J]. Journal of Vibration and Shock,2019,38(15):65-72(in Chinese).
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  776
  • HTML全文浏览量:  340
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 录用日期:  2021-02-16
  • 网络出版日期:  2021-03-01
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回