留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢纤维形状对高性能混凝土性能的影响

薛国杰 王传林 张佳苗 刘泽平 张腾腾 张宇轩

薛国杰, 王传林, 张佳苗, 等. 钢纤维形状对高性能混凝土性能的影响[J]. 复合材料学报, 2021, 38(12): 4313-4324. doi: 10.13801/j.cnki.fhclxb.20210210.003
引用本文: 薛国杰, 王传林, 张佳苗, 等. 钢纤维形状对高性能混凝土性能的影响[J]. 复合材料学报, 2021, 38(12): 4313-4324. doi: 10.13801/j.cnki.fhclxb.20210210.003
XUE Guojie, WANG Chuanlin, ZHANG Jiamiao, et al. Influence of steel fiber shape on the performance of high-performance concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4313-4324. doi: 10.13801/j.cnki.fhclxb.20210210.003
Citation: XUE Guojie, WANG Chuanlin, ZHANG Jiamiao, et al. Influence of steel fiber shape on the performance of high-performance concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4313-4324. doi: 10.13801/j.cnki.fhclxb.20210210.003

钢纤维形状对高性能混凝土性能的影响

doi: 10.13801/j.cnki.fhclxb.20210210.003
基金项目: 汕头大学科研启动经费(NFT17011)
详细信息
    通讯作者:

    王传林,博士,讲师,硕士生导师,研究方向为土木工程材料和结构加固 E-mail:clwang@stu.edu.cn

  • 中图分类号: TB333

Influence of steel fiber shape on the performance of high-performance concrete

  • 摘要: 试验研究了6种长径比较小且直径较粗的钢纤维(SF)(短直形、长直线形、圆弧形、闭合三角形、闭合矩形、闭合圆环形)对高性能混凝土性能的影响。通过改变SF体积分数从而改变其形成的环域个数和面积,探究二者对混凝土流动性、抗拉及抗折强度的影响,并通过研究破坏界面分析混凝土破坏形式和机制。结果表明:闭合区域个数及纤维的环域面积对混凝土流动起主要影响;闭合SF中圆环形SF对混凝土抗折及抗压强度的提升效果优于其他形状的闭合SF。短直形SF与圆环形SF混杂试验中,圆环形SF体积分数为1vol%、短直形SF体积分数为0.5vol%时,SF/混凝土抗压强度和抗折强度提升的综合效果最佳。

     

  • 图  1  闭合钢纤维(SF)分析假设及对比

    Figure  1.  Analysis hypothesis and comparison of closed steel fiber (SF)

    图  2  长径比较小且直径较粗SF理论分析设想

    Figure  2.  Hypothesis of theoretical analysis of SF with smaller aspect ratio and larger diameter

    图  3  SF种类

    Figure  3.  Types of SF

    图  4  闭合SF/混凝土流动性

    Figure  4.  Fluidity of closed SF reinforced concrete

    图  5  非闭合SF/混凝土抗折强度

    Figure  5.  Bending strength of non-closed SF/concrete

    图  6  短直形SF/混凝土抗折破坏形态

    Figure  6.  Bending failure modes of short straight SF/concrete

    图  7  闭合SF/混凝土抗折强度

    Figure  7.  Bending strength of closed SF/concrete

    图  8  矩形SF/混凝土抗折断裂面形态

    Figure  8.  Fracture surface morphology of rectangular SF/concrete

    图  9  非闭合SF/混凝土抗压强度

    Figure  9.  Compressive strength of non-closed SF/concrete

    图  10  闭合SF/混凝土抗压强度

    Figure  10.  Compressive strength of closed SF/concrete

    图  11  闭合SF/混凝土抗压破坏断面

    Figure  11.  Section of compressive failure of closed SF/concrete

    图  12  环形SF保护下的混凝土碎块

    Figure  12.  Concrete fragments protected by circular SF

    图  13  闭合SF对短直SF端部的锚固

    Figure  13.  End of short straight SF being anchored by closed SF

    图  14  环形SF与短直SF混杂增强混凝土强度

    Figure  14.  Strength of hybrid concrete strengthened with circular SF and short straight SF

    图  15  三角形SF/混凝土断面微观形态

    Figure  15.  Microstructures of triangular SF/concrete section

    表  1  硅酸盐水泥P.O 42.5R的技术指标

    Table  1.   Technical indexes of Portland cement P.O 42.5R

    PropertyNational
    standard
    Measured
    value
    Loss on ignition ≤5.00 3.06
    Specific surface area ≥300 378
    Initial setting time/min ≥45 186
    Final setting time/min ≤600 230
    3-day compressive strength/MPa ≥4.0 5.6
    3-day bending strength/MPa ≥22.0 27.6
    28-day compressive strength/MPa ≥6.5 6.4
    28-day bending strength/MPa ≥42.5 45.1
    下载: 导出CSV

    表  2  水泥、粉煤灰、硅灰组成成分

    Table  2.   Composition of cement, fly ash and silica fume wt%

    MaterialSiO2Al2O3Fe2O3CaOMgOK2ONa2O
    Cement 21.83 3.59 6.30 57.80 2.61 0.84 0.23
    Fly ash 46.44 38.01 3.12 7.50 0.23 0.88 0.33
    Silica fume 92.18 0.23 0.09 0.99 1.83 0.31 0.05
    下载: 导出CSV

    表  3  高性能混凝土基准配合比

    Table  3.   Reference mix proportion of high-performance concrete

    Cement/(kg·m−3)Fly ash/(kg·m−3)Silica fume/(kg·m−3)River sand/(kg·m−3)Water-binder ratioSuperplasticizer
    700 140 210 1050 0.21 6%
    Note: the calculated water content of water-binder ratio is the sum of water content of water reducer and the added water, and the cementitious materials is the total content of cement, silica fume and fly ash.
    下载: 导出CSV

    表  4  SF参数

    Table  4.   Parameters of SF

    SFLength of
    single steel
    fiber/mm
    Fiber
    diameter/
    mm
    Effective
    anchorage
    length/mm
    Short straight 10 1.2 10
    Long straight 15 1.2 15
    Half ring 15 1.2 10
    Circular 31.4 1.2 10
    Triangular 30 1.2 10
    Rectangular 40 1.2 10
    下载: 导出CSV

    表  5  混凝土强度测试样本

    Table  5.   Concrete strength test samples

    Group nameShape of SFSF volume fraction/vol%Number of SF/pieceRing area/mm2
    Benchmark 0 0 0
    1vol%SF(SS)/concrete Short straight (SS) 1 680 0
    1.5vol%SF(SS)/concrete Short straight (SS) 1.5 1020 0
    2vol%SF(SS)/concrete Short straight (SS) 2 1360 0
    1vol%SF(LS)/concrete Long straight (LS) 1 455 0
    1.5vol%SF(LS)/concrete Long straight (LS) 1.5 680 0
    2vol%SF(LS)/concrete Long straight (LS) 2 910 0
    1vol%SF(HR)/concrete Half ring (HR) 1 455 0
    1.5vol%SF(HR)/concrete Half ring (HR) 1.5 680 0
    2% SF(HR)/concrete Half ring (HR) 2 910 0
    0.5vol%SF(CR)/concrete Circular (CR) 0.5 107 8400
    1vol%SF(CR)/concrete Circular (CR) 1 215 16878
    1.5vol%SF(CR)/concrete Circular (CR) 1.5 325 25513
    2vol%SF(CR)/concrete Circular (CR) 2 432 33912
    0.5vol%SF(T)/concrete Triangular (T) 0.5 115 4980
    1vol%SF(T)/concrete Triangular (T) 1 230 9959
    1.5vol%SF(T)/concrete Triangular (T) 1.5 345 14939
    2vol%SF(T)/concrete Triangular (T) 2 460 19918
    0.5vol%SF(R)/concrete Rectangular (R) 0.5 85 8500
    1vol%SF(R)/concrete Rectangular (R) 1 170 17000
    1.5vol%SF(R)/concrete Rectangular (R) 1.5 255 25500
    2vol%SF(R)/concrete Rectangular (R) 2 340 34000
    1vol%SF(CR)/concrete+
    0.5vol%SF(SS)/concrete
    Circular (CR)+
    Short straight (SS)
    1+0.5 215+340
    0.5vol%SF(CR)/concrete+
    1vol%SF(SS)/concrete
    Circular (CR)+
    Short straight (SS)
    0.5+1 105+170
    下载: 导出CSV

    表  6  SF对混凝土流动性的影响

    Table  6.   Influence of SF on the fluidity of concrete

    SampleSF volume fraction/vol%Number of SFRing area/mm2Fluidity/mm
    Benchmark 0 0 0 167
    0.5vol%SF(T)/concrete 0.5 115 4980 170
    1vol%SF(T)/concrete 1 230 9959 177
    1.5vol%SF(T)/concrete 1.5 345 14939 169
    2vol%SF(T)/concrete 2 460 19918 162
    0.5vol%SF(R)/concrete 0.5 85 8500 169
    1vol%SF(R)/concrete 1 170 17000 176
    1.5vol%SF(R)/concrete 1.5 255 25500 164
    2vol%SF(R)/concrete 2 340 34000 156
    0.5vol%SF(CR)/concrete 0.5 107 8400 168
    1vol%SF(CR)/concrete 1 215 16878 171
    1.5vol%SF(CR)/concrete 1.5 325 25513 151
    2vol%SF(CR)/concrete 2 432 33912 148
    下载: 导出CSV
  • [1] 杨松霖, 刁波. 超高性能钢纤维混凝土力学性能[J]. 交通运输工程学报, 2011, 11(2):8-13. doi: 10.3969/j.issn.1671-1637.2011.02.002

    YANG Songlin, DIAO Bo. Mechanical properties of ultra high performance steel fiber reinforced concrete[J]. Journal of Transportation Engineering,2011,11(2):8-13(in Chinese). doi: 10.3969/j.issn.1671-1637.2011.02.002
    [2] 朋改非, 牛旭婧, 赵怡琳. 异形钢纤维对超高性能混凝土增强增韧的影响[J]. 建筑材料学报, 2016, 19(6):1013-1018. doi: 10.3969/j.issn.1007-9629.2016.06.010

    PENG Gaifei, NIU Xujing, ZHAO Yilin. Effect of profiled steel fiber on the reinforcement and toughness of ultra-high performance concrete[J]. Journal of Building Materials,2016,19(6):1013-1018(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.06.010
    [3] 黄育, 王必斌, 陈万祥, 等. 不同钢纤维对RPC性能影响的试验分析[J]. 解放军理工大学学报(自然科学版), 2003(5):64-67.

    HUANG Yu, WANG Bibin, CHEN Wanxiang, et al. Experimental analysis of the effect of different steel fibers on the properties of RPC[J]. Journal of PLA University of Science and Technology (Natural Science Edition),2003(5):64-67(in Chinese).
    [4] 徐朦. 多种钢纤维对超高性能混凝土力学性能影响的比较研究[D]. 北京: 北京交通大学, 2014.

    XU Meng. Comparative study on the influence of various steel fibers on the mechanical properties of ultra-high-performance concrete[D]. Beijing: Beijing Jiaotong University, 2014(in Chinese).
    [5] 高绪明. 钢纤维对超高性能混凝土性能影响的研究[D]. 长沙: 湖南大学, 2013.

    GAO Xuming. Study on the influence of steel fiber on the performance of ultra high performance concrete[D]. Changsha: Hunan University, 2013(in Chinese).
    [6] 史才军, 何稳, 吴泽媚, 等. 纤维对UHPC力学性能的影响研究进展[J]. 硅酸盐通报, 2015, 34(8):2227-2236, 2247.

    SHI Caijun, HE Wen, WU Zemei, et al. Research progress on the influence of fiber on mechanical properties of UHPC[J]. Silicate Bulletin,2015,34(8):2227-2236, 2247(in Chinese).
    [7] TOUSSAINT F, ROUCH H, DOBRUSKY S. Numerical simulations and non destructive measurements of fiber orientation on UHPFRC wind towers[C]//Symposium on Ultra-High-Performance Fiber-Reinforced Concrete, Paris: RILEM Publications SARL, 2017: 105-114.
    [8] 王强. 钢纤维取向角对超高性能混凝土抗拉强度的影响[J]. 混凝土与水泥制品, 2019(1):51-54.

    WANG Qiang. The effects of steel fiber orientation on tensile strength of ultra-high performance concrete[J]. China Concrete and Cement Products,2019(1):51-54(in Chinese).
    [9] MENG W N, KHAYAT, K H. Effect of hybrid fibers on fresh properties, mechanical properties, and autogenous shrinkage of cost-effective UHPC[J]. Journal of Materials in Civil Engineering,2018,30(4):04018030.
    [10] PREM P R, MURTHY A R, BHARATKUMAR B H. Influence of curing regime and steel fibres on the mechanical properties of UHPC[J]. Magazine of Concrete Research,2015,67(17-18):1-15.
    [11] 吴峥. 钢纤维对超高性能混凝土裂后性能的影响[D]. 长沙: 湖南大学, 2017.

    WU Zheng. Influence of steel fiber on post cracking performance of ultra high performance concrete[D]. Changsha: Hunan University, 2017(in Chinese).
    [12] 何稳. 钢纤维在超高性能混凝土中增强增韧作用的研究[D]. 长沙: 湖南大学, 2015.

    HE Wen. Study on strengthening and toughening effect of steel fiber in ultra-high performance concrete[D]. Changsha: Hunan University, 2015(in Chinese).
    [13] 宋焱. 级配纤维超高性能混凝土抗拉性能研究[D]. 长沙: 湖南大学, 2006.

    SONG Yan. Study on tensile properties of graded fiber UHPC[D]. Changsha: Hunan University, 2006(in Chinese).
    [14] 杨志慧. 不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D]. 北京: 北京交通大学, 2006.

    YANG Zhihui. Study on tensile properties of reactive powder concrete with different steel fiber contents[D]. Beijing: Beijing Jiaotong University, 2006(in Chinese).
    [15] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58. doi: 10.3969/j.issn.1001-7372.2015.08.007

    ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile test of ultra high performance concrete[J]. China Journal of Highway and Transport,2015,28(8):50-58(in Chinese). doi: 10.3969/j.issn.1001-7372.2015.08.007
    [16] 杜任远, 陈宝春. 活性粉末混凝土拱极限承载力试验研究[J]. 工程力学, 2013, 30(5):42-48.

    DU Renyuan, CHEN Baochun. Experimental study on ultimate bearing capacity of reactive powder concrete arch[J]. Engineering Mechanics,2013,30(5):42-48(in Chinese).
    [17] 刁波, 封云, 叶英华, 等. 钢筋超高性能混合钢纤维混凝土梁受剪性能研究[J]. 工业建筑, 2012, 42(11):6-10, 15.

    DIAO Bo, FENG Yun, YE Yinghua, et al. Study on shear behavior of reinforced ultra-high performance hybrid steel fiber reinforced concrete beams[J]. Industrial Architecture,2012,42(11):6-10, 15(in Chinese).
    [18] 陈宝春, 林毅焌, 杨简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报(自然科学版), 2020, 48(1):58-68.

    CHEN Baochun, LIN Yijun. YANG Jian, et al. Fiber in high performance fiber reinforced concrete review[J]. Journal of Fuzhou University (Natural Science Edition),2020,48(1):58-68(in Chinese).
    [19] 中国国家质量技术监督局. 水泥胶砂强度检测方法: GB/T 17671—1999[S]. 北京: 中国标准出版社, 2014.

    State Administration of Quality and Technical Supervision of China. Test method for cement mortar strength: GB/T 17671—1999[S]. Beijing: China Standard Press, 2014(in Chinese).
    [20] 中华人民共和国国家质量监督检验检验总局. 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国标准出版社, 2015(in Chinese).

    General Administration of Quality Supervision, Inspection and Inspection of the People’s Republic of China, State Administration for standardization of China.Determination method for fluidity of cement mortar: GB/T 2419—2005[S]. Beijing: China Standards Press, 2015(in Chinese).
    [21] 孙博超. 大流动性UHPC制备与体积稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    SUN Bochao. Preparation and volume stability of UHPC with high fluidity[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
    [22] 焦楚杰, 孙伟, 高培正, 等. 钢纤维高强混凝土力学性能研究[J]. 混凝土与水泥制品, 2005(3):35-38. doi: 10.3969/j.issn.1000-4637.2005.03.011

    JIAO Chujie, SUN Wei, GAO Peizheng, et al. Study on mechanical properties of steel fiber high strength concrete[J]. Concrete and Cement Products,2005(3):35-38(in Chinese). doi: 10.3969/j.issn.1000-4637.2005.03.011
    [23] 李传习, 石家宽, 聂洁, 等. 平直型钢纤维掺量与长径比对超高性能混凝土性能的影响[J]. 硅酸盐通报, 2019, 38(9):2947-2954.

    LI Chuanxi, SHI Jiakuan, NIE Jie, et al. Effect of flat steel fiber content and length to diameter ratio on performance of ultra-high performance concrete[J]. Chinese Journal of Ceramics,2019,38(9):2947-2954(in Chinese).
    [24] PARK J J, YOO D Y, PARK G J et al. Feasibility of reducing the fiber content in ultra-high-performance fiber-reinforced concrete under flexure[J]. Materials,2017,10(2):118. doi: 10.3390/ma10020118
    [25] 周璇. 超高性能注浆纤维水泥基材料性能研究[D]. 长沙: 湖南大学, 2017.

    ZHOU Xuan. Research on properties of ultra-high perfor-mance grouting fiber cement based materials[D]. Changsha: Hunan University, 2017(in Chinese).
    [26] 孟龙, 黄瑞源, 蒋东, 等. 钢纤维的掺入对混凝土材料力学性能的优化[J]. 低温建筑技术, 2019, 41(6):17-21.

    MENG Long, HUANG Ruiyuan, JIANG Dong, et al. Optimization of mechanical properties of concrete materials by incorporation of steel fiber[J]. Low Temperature Building Technology,2019,41(6):17-21(in Chinese).
    [27] 王志杰, 孟祥磊. 钢纤维混凝土基本力学性能研究[J]. 混凝土, 2014(4):78-81, 86. doi: 10.3969/j.issn.1002-3550.2014.04.023

    WANG Zhijie, MENG Xianglei. Study on basic mechanical properties of steel fiber reinforced concrete[J]. Concrete,2014(4):78-81, 86(in Chinese). doi: 10.3969/j.issn.1002-3550.2014.04.023
    [28] HASSAN A M T, JONES S W, MAHMUD G H. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fiber reinforced concrete (UHPFRC)[J]. Construction and Building Materials,2012,37:874-882. doi: 10.1016/j.conbuildmat.2012.04.030
    [29] 吴浩, 王振地, 王玲, 等. 钢纤维类型和掺量对高强混凝土力学性能的影响[J]. 低温建筑技术, 2017, 39(8):1-3.

    WU Hao, WANG Zhendi, WANG Ling, et al. Influence of steel fiber type and content on mechanical properties of high strength concrete[J]. Low Temperature Building Technology,2017,39(8):1-3(in Chinese).
    [30] 陈升平, 倪亮, 卢应发, 等. 钢纤维对混凝土轴压性能影响的试验研究[J]. 湖北工业大学学报, 2020, 35(5):97-101. doi: 10.3969/j.issn.1003-4684.2020.05.021

    CHEN Shengping, NI Liang, LU Yingfa, et al. Experimental study on the effect of steel fiber on the axial compressive performance of concrete[J]. Journal of Hubei University of Technology,2020,35(5):97-101(in Chinese). doi: 10.3969/j.issn.1003-4684.2020.05.021
    [31] LIM W Y, HHONG S G. Fracture behavior of UHPC reinforced with hybrid steel fibers[J]. Journal of the Korea Concrete Institute,2016,28(2):223-234. doi: 10.4334/JKCI.2016.28.2.223
    [32] PRABHA S L, DATTATREYA J K, NEELAMEGAN M, et al. Study on stress-strain properties of reactive powder concrete under uniaxia compression[J]. International Journal of Engineering & Technology,2010,2(11):6408-6416.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  873
  • HTML全文浏览量:  531
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 录用日期:  2021-01-25
  • 网络出版日期:  2021-02-10
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回