留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可穿戴石墨烯复合材料压阻传感性能计算方法及其参数分析

李正 尚军军 刘夏 杨庆生

李正, 尚军军, 刘夏, 等. 可穿戴石墨烯复合材料压阻传感性能计算方法及其参数分析[J]. 复合材料学报, 2021, 38(4): 1066-1075. doi: 10.13801/j.cnki.fhclxb.20201229.002
引用本文: 李正, 尚军军, 刘夏, 等. 可穿戴石墨烯复合材料压阻传感性能计算方法及其参数分析[J]. 复合材料学报, 2021, 38(4): 1066-1075. doi: 10.13801/j.cnki.fhclxb.20201229.002
LI Zheng, SHANG Junjun, LIU Xia, et al. Computational method and parameters analysis of piezoresistive sensing properties of wearable graphene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1066-1075. doi: 10.13801/j.cnki.fhclxb.20201229.002
Citation: LI Zheng, SHANG Junjun, LIU Xia, et al. Computational method and parameters analysis of piezoresistive sensing properties of wearable graphene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1066-1075. doi: 10.13801/j.cnki.fhclxb.20201229.002

可穿戴石墨烯复合材料压阻传感性能计算方法及其参数分析

doi: 10.13801/j.cnki.fhclxb.20201229.002
基金项目: 国家自然科学基金(11772012;11932002)
详细信息
    通讯作者:

    杨庆生,博士,教授,博士生导师,研究方向为新型材料与结构的力学性能分析 E-mail:qsyang@bjut.edu.cn

  • 中图分类号: TB332

Computational method and parameters analysis of piezoresistive sensing properties of wearable graphene composites

  • 摘要: 随机堆叠石墨烯制成的石墨烯复合材料(GC)的不均匀性,使得GC的压阻传感性能与其细观单元的尺寸密切相关。根据GC的微观结构特点,发展了一种GC压阻传感性能计算方法,依次计算了GC的电子渗流概率、初始方阻和相对电阻-应变关系。结果表明:GC的电子渗流概率随着石墨烯面分比的增大而增大,大长宽比石墨烯组成的GC的渗流阈值更低,电子迁移网络连通的最小面分比是0.5;GC代表单元的最小边长可由它的初始方阻确定,大面分比GC拥有更小的代表单元,当石墨烯面分比分别为1.2、1.4、1.6、1.8、2.0时,GC代表单元的最小边长与石墨烯边长的比值为35、30、25、20、15。最后,不同石墨烯面分比、长宽比的GC代表单元的计算结果证实,增大石墨烯的面分比与长宽比能够延长GC的线性感知阶段,提高GC的总感知范围。

     

  • 图  1  石墨烯复合材料(GC)模型与细观单元的选取示意

    Figure  1.  Schematics of graphene composites (GC) model and the selected meso element

    图  2  GC传感器模型构造过程示意图

    Figure  2.  Schematics of the process for building GC sensor model

    图  3  GC电子渗流概率计算流程

    Figure  3.  Calculation process of GC electron percolation probability

    图  4  细观单元的边长对GC电子渗流概率的影响

    Figure  4.  Effect of the side length of meso elements on GC electron percolation probability

    图  5  石墨烯的长宽比对GC电子渗流概率的影响

    Figure  5.  Effect of the graphene aspect ratio on GC electron percolation probability

    图  6  GC细观单元的初始方阻均值与标准差

    Figure  6.  Mean value and standard deviation of the initial sheet resistances of GC mesoelements

    图  7  GC细观单元的初始方阻相对偏差

    Figure  7.  Relative deviation of the initial sheet resistances of GC mesoelements

    Ei (i=1-8)—ith model

    图  8  GC细观单元的相对电阻-应变关系曲线

    Figure  8.  Relative resistance-strain curves of GC meso elements

    图  9  不同面分比的GC相对电阻-应变与灵敏度-应变曲线

    Figure  9.  Relative resistance-strain and gauge factor-strain curves of GC with different area fractions

    图  10  低面分比和高面分比GC局部石墨烯滑移示意图

    Figure  10.  Graphene slip schematics of the local parts in GC with low and high area fractions

    图  11  不同长宽比GC相对电阻-应变与灵敏度-应变曲线

    Figure  11.  Relative resistance-strain and gauge factor-strain curves of GC with different aspect ratios

    图  12  小长宽比和大长宽比石墨烯滑移示意图

    Figure  12.  Slip schematics of the graphene with small and large aspect ratio

  • [1] ZHENG Q, LEE J, SHEN X, et al. Graphene-based wearable piezoresistive physical sensors[J]. Materials Today,2020,36:158-179. doi: 10.1016/j.mattod.2019.12.004
    [2] FU Y, LI Y, LIU Y, et al. High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite[J]. ACS Applied Materials & Interfaces,2018,10(41):35503-35509.
    [3] WU S, PENG S, YU Y, et al. Strategies for designing stretchable strain sensors and conductors[J]. Advanced Materials Technologies,2019,5(2):1900908.
    [4] TUNG T T, NINE M J, KREBSZ M, et al. Recent advances in sensing applications of graphene assemblies and their composites[J]. Advanced Functional Materials,2017,27(46):1702891. doi: 10.1002/adfm.201702891
    [5] LI J, FANG L, SUN B, et al. Review-recent progress in flexible and stretchable piezoresistive sensors and their applications[J]. Journal of the Electrochemical Society,2020,167(3):37561. doi: 10.1149/1945-7111/ab6828
    [6] LI X, KOH K H, FARHAN M, et al. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles[J]. Nanoscale,2020,12(6):4110-4118. doi: 10.1039/C9NR09306K
    [7] SON W, KIM K, LEE S, et al. Ecoflex-passivated graphene-yarn composite for a highly conductive and stretchable strain sensor[J]. Journal of Nanoscience and Nanotechnology,2019,19(10):6690-6695. doi: 10.1166/jnn.2019.17097
    [8] WANG Z, LI P, SONG R, et al. High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors[J]. Science Bulletin,2020,65(16):1363-1370. doi: 10.1016/j.scib.2020.05.002
    [9] XIE L, ZI X, MENG Q, et al. Detection of physiological signals based on graphene using a simple and low-cost method[J]. Sensors,2019,19(7):1656. doi: 10.3390/s19071656
    [10] WANG S, NING H, HU N, et al. Environmentally-friendly and multifunctional graphene-silk fabric strain sensor for human-motion detection[J]. Advanced materials interfaces,2019,7(1):1901507.
    [11] TAO L, WANG D, TIAN H, et al. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions[J]. Nanoscale,2017,9(24):8266-8273. doi: 10.1039/C7NR01862B
    [12] WANG W, YANG T, ZHU H, et al. Bio-inspired mechanics of highly sensitive stretchable graphene strain sensors[J]. Applied Physics Letters,2015,106(17):171903. doi: 10.1063/1.4919105
    [13] HEMPEL M, NEZICH D, KONG J, et al. A novel class of strain gauges based on layered percolative films of 2D materials[J]. Nano Letters,2012,12(11):5714-5718. doi: 10.1021/nl302959a
    [14] LI Z, YANG Q S. Sensing mechanism of flexible and stretchable composites based on stacked graphene[J]. Materials & Design,2020,187:108384.
    [15] 李正, 杨庆生, 尚军军, 等. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能[J]. 力学学报, 2020, 52(6):1700-1708.

    LI Z, YANG Q S, SHANG J J, et al. Piezoresistive sensing mechanism and piezoresistive performance of in-plane random stacked graphene composites[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(6):1700-1708(in Chinese).
    [16] 杨庆生. 复合材料力学[M]. 北京: 科学出版社, 2020: 261.

    YANG Q S. Mechanics of composite materials[M]. Beijing: Science Press, 2020: 261(in Chinese).
    [17] HAN F, MALOTH T, LUBINEAU G, et al. Computational investigation of the morphology, efficiency, and properties of silver nano wires networks in transparent conductive film[J]. Scientific Reports,2018,8(1):17494.
    [18] HTWE Y Z N, MARIATTI M, CHIN S Y. Fabrication of graphene by electrochemical intercalation method and performance of graphene/PVA composites as stretchable strain sensor[J]. Arabian Journal for Science and Engineering,2020,45(9):7677-7689. doi: 10.1007/s13369-020-04807-w
    [19] LI H, MIRIHANAGE W, SMITH A D, et al. Strain based electrical resistance behaviour of graphene-coated elastomeric yarns[J]. Materials Letters,2020,273:127948. doi: 10.1016/j.matlet.2020.127948
    [20] HOD O, MEYER E, ZHENG Q, et al. Structural super-lubricity and ultralow friction across the length scales[J]. Nature,2018,563(7732):485-492. doi: 10.1038/s41586-018-0704-z
    [21] LI X, YANG T, YANG Y, et al. Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application[J]. Advanced Functional Materials,2016,26(9):1322-1329. doi: 10.1002/adfm.201504717
    [22] MONTAZERIAN H, RASHIDI A, DALILI A, et al. Graphene-coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications[J]. Small,2019,15(17):1804991. doi: 10.1002/smll.201804991
  • 加载中
图(12)
计量
  • 文章访问数:  944
  • HTML全文浏览量:  441
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-22
  • 录用日期:  2020-12-20
  • 网络出版日期:  2020-12-29
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回