留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强形状记忆聚合物复合材料及其航天应用

张豆 刘彦菊 冷劲松

张豆, 刘彦菊, 冷劲松. 纤维增强形状记忆聚合物复合材料及其航天应用[J]. 复合材料学报, 2021, 38(3): 698-711. doi: 10.13801/j.cnki.fhclxb.20201224.002
引用本文: 张豆, 刘彦菊, 冷劲松. 纤维增强形状记忆聚合物复合材料及其航天应用[J]. 复合材料学报, 2021, 38(3): 698-711. doi: 10.13801/j.cnki.fhclxb.20201224.002
ZHANG Dou, LIU Yanju, LENG Jinsong. Fiber reinforced shape memory polymer composites and their applications in aerospace[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 698-711. doi: 10.13801/j.cnki.fhclxb.20201224.002
Citation: ZHANG Dou, LIU Yanju, LENG Jinsong. Fiber reinforced shape memory polymer composites and their applications in aerospace[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 698-711. doi: 10.13801/j.cnki.fhclxb.20201224.002

纤维增强形状记忆聚合物复合材料及其航天应用

doi: 10.13801/j.cnki.fhclxb.20201224.002
基金项目: 国家自然科学基金(11632005;11672086)
详细信息
    通讯作者:

    刘彦菊,博士,教授,博士生导师,研究方向为复合材料电热性能  E-mail:yj-liu@hit.edu.cn

    冷劲松,博士,教授,博士生导师,研究方向为智能复合材料  E-mail:libei@whut.edu.cn

  • 中图分类号: TB332

Fiber reinforced shape memory polymer composites and their applications in aerospace

  • 摘要: 形状记忆聚合物(SMP)是一种能够保持临时形状,并在外界刺激下自发回复到其初始形状的智能材料,具有高形状固定率、高形状回复率、转变温度可调、变形能力强、质量轻等优点,但其应用受到响应方式单一和承载能力差的限制,通过向聚合物中添加功能颗粒或增强纤维制成形状记忆聚合物复合材料(SMPC),可有效解决这一问题。首先介绍了SMP形状记忆效应的原理,然后阐述了纤维增强型SMPC有限变形过程中纤维的微屈曲行为。最后对可变形结构在航天领域的应用进行了论述。

     

  • 图  1  应力-应变-温度的3D热-力学循环过程示意图[12]

    Figure  1.  3D diagram of stress-strain-temperature thermal-mechanical cycling process[12]

    图  2  碳纤维增强形状记忆聚合物复合材料(SMPC)受压纤维的微屈曲[18]

    Figure  2.  Microbuckling of carbon fibre reinforced shape memory polymer composite (SMPC)[18]

    图  3  弯曲变形时纤维微屈曲示意图[21]

    Figure  3.  Schematic diagram of fiber microbuckling during bending deformation[21]

    图  4  弹性基体中一个杆在压缩载荷下屈曲变形[31]

    Figure  4.  A bar on an elastic foundation[31]

    图  5  压缩载荷下两种纤维屈曲失效方式: (a)拉伸模式; (b)剪切模式[32]

    Figure  5.  Two failure modes of fiber buckling under compression load: (a) Tension mode; (b) Shearing mode[32]

    图  6  纤维增强形状记忆复合材料的弯曲变形示意图[35]

    Figure  6.  Bending deformation structure of fiber reinforced shape memory composites[35]

    图  7  功能梯度材料弯曲变形示意图[37]

    Figure  7.  Deformation of functionally graded plates under pure bending[37]

    图  8  Tembo®EMC铰链: (a)展开状态; (b)折叠状态; (c)EMC铰链在TacSat-2飞行试验中的安装位置[41]

    Figure  8.  Tembo®EMC hinge: (a) Deployable configuration; (b) Folded configuration; (c) Installment of EMC hinge in TacSat-2 mission[41]

    图  9  SMPC铰链: (a)铰链回复过程[42]; (b)铰链驱动太阳能帆板回复过程[42]; (c)混杂智能铰链组成示意图[43]; (d)一体化铰链回复过程[44]

    Figure  9.  SMPC hinge: (a) Recovery process of SMPC hinge[42]; (b) Recovery process of solar array driven by SMPC hinge[42]; (c) Hybrid intelligent hinge[43]; (d) Recovery process of integrated hinge[44]

    图  10  SMPC套筒式分离装置: (a) 莲花型[45]; (b)八爪型[45]; (c) 竹节型[45]; (d)凹痕型[46]

    Figure  10.  SMPC telescope-feed release mechanism: (a) Lotus type[45]; (b) Eight-paw type[45]; (c) Bamboo type[45]; (d) Groove type[46]

    图  11  “钩子型”释放机构在立方星上的应用[47]

    Figure  11.  “Hook” type on a CubeSat[47]

    图  12  FalconSAT-3卫星上的可展开重力梯度杆(a)及EMC片层折叠方式(b)[48]

    Figure  12.  Deployable gravity gradient boom in FalconSAT-3 (a) and folded configuration of EMC (b)[48]

    图  13  桁架结构: (a)可展开桁架展开过程[49]; (b)三纵梁桁架结构[50]

    Figure  13.  Truss: (a) Deployable process of the truss[49]; (b) Diagram and modal of three-longeron truss[50]

    图  14  大承载可展开桁架结构: (a)收拢状态; (b)展开状态[51]

    Figure  14.  Deployable truss with large carrying capacity: (a) Packaged configuration; (b) Deployable configuration[51]

    图  15  柔性太阳翼在轨飞行照片: (a)~(b)发射13天后; (c)~(d)发射8个月后[53]

    Figure  15.  Pictures of a flexible solar wing in orbit: (a)–(b) 13 days after launching; (c)–(d) 8 months after launching[53]

    图  16  SMPC豆荚杆作为柔性太阳翼基板: (a)收拢状态; (b)展开状态[54]

    Figure  16.  SMPC LCCT’s potential application as deployable solar wing: (a) Packaged configuration; (b) Deployed configuration[54]

    图  17  搭载SJ20同步卫星的可展开柔性太阳能电池阵列系统(SMPC-FSAS) 2020年1月5日在轨展开过程: (a), (b)解锁过程; (c)–(f)展开过程[55]

    Figure  17.  On-orbit releasing and deployment demonstration of SMPC-FSAS flight hardware which was performed on SJ20 Geostationary Satellite on 5 Jan., 2020: (a), (b) Unlocking process in space; (c)–(f) Deploying process in space[55]

  • [1] HARTL D J. Shape memory materials begin to take shape[J]. Aerospace America,2018,56(11):9.
    [2] JANI J M, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design,2014,56:1078-1113.
    [3] ZAEEM M A, ZHANG N, MAMIVAND M. A review of computational modeling techniques in study and design of shape memory ceramics[J]. Computational Materials Science,2019,160:120-136. doi: 10.1016/j.commatsci.2018.12.062
    [4] MU T, LIU L W, LAN X, et al. Shape memory polymers for composites[J]. Composites Science and Technology,2018,160:169-198. doi: 10.1016/j.compscitech.2018.03.018
    [5] 李丰丰, 刘彦菊, 冷劲松. 形状记忆聚合物及其复合材料在航天领域的应用进展[J]. 宇航学报, 2020, 41(6):697-706.

    LI F F, LIU Y J, LENG J S. Progress of shape memory polymers and their composites in aerospace applications[J]. Journal of Astronautics,2020,41(6):697-706(in Chinese).
    [6] LUO X F, MATHER P T. Triple-shape polymeric composites (TSPCs)[J]. Advanced Functional Materials,2010,20(16):2649-2656. doi: 10.1002/adfm.201000052
    [7] XIE T. Tunable polymer multi-shape memory effect[J]. Nature,2010,464(7286):267-270. doi: 10.1038/nature08863
    [8] 黄淼铭, 董侠, 刘伟丽, 等. 双向形状记忆结晶聚合物及其复合材料的研究进展[J]. 高分子学报, 2017(4):563-579. doi: 10.11777/j.issn1000-3304.2017.16229

    HUANG M M, DONG X, LIU W L, et al. Recent progress in two-way shape memory crystalline polymer and its composites[J]. Acta Polymerica Sinica,2017(4):563-579(in Chinese). doi: 10.11777/j.issn1000-3304.2017.16229
    [9] LI G, WANG S W, LIU Z T, et al. 2D-to-3D shape transformation of room-temperature-programmable shape-memory polymers through selective suppression of strain relaxation[J]. ACS Applied Materials & Interfaces,2018,10(46):40189-40197.
    [10] SU X B, PENG X Q. A 3D finite strain viscoelastic constitutive model for thermally induced shape memory polymers based on energy decomposition[J]. International Journal of Plasticity,2018,110:166-182.
    [11] WESTBROOK K K, KAO P H, CASTRO F, et al. A 3D finite deformation constitutive model for amorphous shape memory polymers: A multi-branch modeling approach for nonequilibrium relaxation processes[J]. Mechanics of Materials,2011,43(12):853-869. doi: 10.1016/j.mechmat.2011.09.004
    [12] LENG J, XIN L, LIU Y, et al. Shape-memory polymers and their composites: Stimulus methods and applications[J]. Progress in Materials Science,2011,56(7):1077-1135.
    [13] YU K, GE Q, QI H J. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers[J]. Nature Communications,2014,5:3066.
    [14] GALL K, DUNN M L, LIU Y, et al. Shape memory polymer nanocomposites[J]. Acta Materialia,2002,50(20):5115-5126.
    [15] LENG J S, HUANG W M, LAN X, et al. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite[J]. Applied Physics Letters,2008,92(20):204101.
    [16] LIU Y Y, GUO Y F, ZHAO J, et al. Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances[J]. Composites Science and Technology,2019,177:49-56.
    [17] PARK M, KIM Y, HWANG J O, et al. Shape recovery characteristics of shape memory epoxy composites reinforced with chopped carbon fibers[J]. Carbon Letters,2019,29(3):219-224.
    [18] LAN X, LIU L W, LIU Y J, et al. Post microbuckling mechanics of fibre-reinforced shape-memory polymers undergoing flexure deformation[J]. Mechanical of Materials,2014,72:46-60.
    [19] TALREJA R. Assessment of the fundamentals of failure theories for composite materials[J]. Composistes Science and Technology,2014,105:190-201.
    [20] ZHUANG L Q, TALREJA R. Effects of voids on postbuckling delamination growth in unidirectional composites[J]. International Jouranl of Solids and Structures,2014,51(5):936-944.
    [21] CAMPBELL D, MAJI A. Deployment accuracy and mechanics of elastic memory composites[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk: AIAA, 2013.
    [22] AGORAS M, LOPEZ-PAMIES O, CASTANEDA P P. A general hyperelastic model for incompressible fiber-reinforced elastomers[J]. Journal of the Mechanics and Physics of Solids,2009,57(2):268-286.
    [23] LOPEZ-PAMIES O, IDIART M I. Fiber-reinforced hyperelastic solids: A realizable homogenization constitutive theory[J]. Journal of Engineering Mathematics,2010,68(1):57-83.
    [24] JIMENEZ F L. On the isotropy of randomly generated representative volume elements for fiber-reinforced elastomers[J]. Composite Part B: Engineering,2016,87:33-39.
    [25] MICHAILIDIS P A, TRIANTAFYLLIDIS N, SHAW J A, et al. Superelasticity and stability of a shape memory alloy hexagonal honeycomb under in-plane compression[J]. International Journal of Solids and Structures,2009,46(13):2724-2738.
    [26] MICHEL J C, LOPEZ-PAMIES O, CASTANEDA P P, et al. Microscopic and macroscopic instabilities in finitely strained fiber-reinforced elastomers[J]. Journal of the Mechanics and Physics of Solids,2010,58(11):1776-1803.
    [27] LIGNON E, LE TALLEC P, TRIANTAGYLLIDIS N. Onset of failure in a fiber reinforced elastomer under constrained bending[J]. International Journal of Solids and Structures,2013,50(2):279-287.
    [28] LE TALLEC P, BOUSSETTA R, LIGNON E. An enriched model of fiber-reinforced thin flexible structures with inplane buckling capabilities[J]. International Journal of Numerical Methods in Engineering,2012,91(8):872-895.
    [29] HEINRICH C, ALDRIDGE M, WINEMAN A S, et al. The influence of the representative volume element (RVE) size on the homogenized response of cured fiber composites[J]. Modelling and Simulation in Materials Science and Engineering,2012,20(7):075007.
    [30] JIANG H Q, SUN Y G, ROGERS J A, et al. Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates[J]. International Journal of Solids and Structures,2008,45(7-8):2014-2023. doi: 10.1016/j.ijsolstr.2007.11.007
    [31] TIMOSHENKO S P, GERE J M. Theory of elastic stability[M]. 2nd Edtion. New York: Dover Publications, 1962.
    [32] ROSEN B W. Mechanics of composite strengthening in fiber composite materials[M]. Ohio: American Society for Metals, 1965: 37-75
    [33] 熊志远. 形状记忆聚合物复合材料折叠变形机理的研究[D]. 北京: 北京交通大学, 2010.

    XIONG Z Y. A study on packaging deformation of elastic memory composites[D]. Beijing: Beijing Jiaotong University, 2010(in Chinese).
    [34] FRANCIS W H, LAKE M S, SCHULTZ M R, et al. Elastic memory composite microbuckling mechanics: Closed-form model with empirical correlation[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Hawaii: AIAA, 2007.
    [35] 兰鑫. 形状记忆聚合物复合材料及其力学基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LAN X. Shape memory polymer composite and its study of mechanical foundations[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [36] ZHANG J, DUI G, LIANG X. Revisiting the micro-buckling of carbon fibers in elastic memory composite plates under pure bending[J]. International Journal of Mechanical Sciences,2018,136:339-348.
    [37] ZHANG J M, DUI G S, WANG X Q. Post-micro-buckling of carbon fibers in functionally graded plates under pure bending[J]. European Journal of Mechanics A: Solid,2019,75:419-425. doi: 10.1016/j.euromechsol.2019.02.007
    [38] JIMENEZ F L. Mechanics of thin carbon fiber composites with a silicone matrix[D]. California: California Institute of Technology, 2011.
    [39] LI F F, LIU Y J, LENG J S. Progress of shape memory polymers and their composites in aerospace applications[J]. Smart Materials and Structures,2019,28(10):103003. doi: 10.1088/1361-665X/ab3d5f
    [40] LIU Y J, DU H Y, LIU L W, et al. Shape memory polymers and their composites in aerospace applications: A review[J]. Smart Materials and Structures,2014,23(2):023001. doi: 10.1088/0964-1726/23/2/023001
    [41] BARRETT R, FRANCIS W, ABRAHAMSON E, et al. Qualification of elastic memory composite hinges for spaceflight applications[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Newport: AIAA, 2006.
    [42] LAN X, LIU Y J, LV H B, et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J]. Smart Materials & Structures,2009,18(2):024002.
    [43] 王亚飞. 形状记忆复合材料的力学性能表征及其在空间可展开结构中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    WANG Y F. The mechanical properties characterization of shape memory composite materials and its application in the spatical developable structures[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [44] LIU T Z, LIU L W, YU M, et al. Integrative hinge based on shape memory polymer composites: Material, design, properties and application[J]. Composites Structures,2018,206:164-176. doi: 10.1016/j.compstruct.2018.08.041
    [45] WEI H Q, LIU L W, ZHANG Z C, et al. Design and analysis of smart release devices based on shape memory polymer composites[J]. Composite Structures,2015,133:642-651. doi: 10.1016/j.compstruct.2015.07.107
    [46] ZHAO H X, LAN X, LIU L W, et al. Design and analysis of shockless smart releasing device based on shape memory polymer composites[J]. Composite Structures,2019,223:110958. doi: 10.1016/j.compstruct.2019.110958
    [47] ZHANG D, LIU L, LENG J, et al. Ultra-light release device integrated with screen-printed heaters for CubeSat’s deployable solar arrays[J]. Composite Structures,2020,232:111561. doi: 10.1016/j.compstruct.2019.111561
    [48] KELLER P, LAKE M, FRANCIS W, et al. Development of a deployable boom for microsatellites using elastic memory composite material[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. California: AIAA, 2004.
    [49] ZHANG R, GUO X, LIU Y, et al. Theoretical analysis and experiments of a space deployable truss structure[J]. Composite Structures,2014,112(5):226-230.
    [50] LI F, LIU L, XIN L, et al. Modal analyses of deployable truss structures based on shape memory polymer composites[J]. International Journal of Applied Mechanics,2016,8(7):1640009. doi: 10.1142/S1758825116400093
    [51] LI F, LIU L, DU L, et al. Mechanical analysis of a tip-loaded deployable truss based on shape memory polymer composite[J]. Composites Structures,2020,242:112196. doi: 10.1016/j.compstruct.2020.112196
    [52] LI F, LIU L, XIN L, et al. Preliminary design and analysis of a cubic deployable support structure based on shape memory polymer composite[J]. International Journal of Smart & Nano Materials,2016,7(2):106-118.
    [53] LI F F, LIU L W, LAN X, et al. Ground and geostationary orbital qualification of a sunlight-stimulated substrate based on shape memory polymer composite[J]. Smart Materials & Structures,2019,28(7):075023.
    [54] LIU Z X, LI Q F, BIAN W F, et al. Preliminary test and analysis of an ultralight lenticular tube based on shape memory polymer composites[J]. Composite Structures,2019,223:110936. doi: 10.1016/j.compstruct.2019.110936
    [55] LAN X, LIU L, ZHANG F, et al. World’s first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites[J]. Science China Technological Sciences,2020,63:1436-1451. doi: 10.1007/s11431-020-1681-0
  • 加载中
图(18)
计量
  • 文章访问数:  1797
  • HTML全文浏览量:  552
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 录用日期:  2020-12-05
  • 网络出版日期:  2020-12-25
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回