留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珍珠母及其仿生复合材料力学行为的研究进展

卢子兴 崔少康 杨振宇

卢子兴, 崔少康, 杨振宇. 珍珠母及其仿生复合材料力学行为的研究进展[J]. 复合材料学报, 2021, 38(3): 641-667. doi: 10.13801/j.cnki.fhclxb.20201208.002
引用本文: 卢子兴, 崔少康, 杨振宇. 珍珠母及其仿生复合材料力学行为的研究进展[J]. 复合材料学报, 2021, 38(3): 641-667. doi: 10.13801/j.cnki.fhclxb.20201208.002
LU Zixing, CUI Shaokang, YANG Zhenyu. Recent progress on mechanical behaviors of nacre and its bio-inspired composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 641-667. doi: 10.13801/j.cnki.fhclxb.20201208.002
Citation: LU Zixing, CUI Shaokang, YANG Zhenyu. Recent progress on mechanical behaviors of nacre and its bio-inspired composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 641-667. doi: 10.13801/j.cnki.fhclxb.20201208.002

珍珠母及其仿生复合材料力学行为的研究进展

doi: 10.13801/j.cnki.fhclxb.20201208.002
基金项目: 国家自然科学基金(11972057;11672014;11672013)
详细信息
    通讯作者:

    卢子兴,博士,教授,博士生导师,研究方向为新型复合材料力学 E-mail:luzixing@buaa.edu.cn

  • 中图分类号: TB332

Recent progress on mechanical behaviors of nacre and its bio-inspired composites

  • 摘要: 珍珠母是由天然文石晶片和有机基质构成的一种两相生物复合材料。其中,文石晶片通过典型交错层叠方式镶嵌在连续的有机基质中,形成高度有序的分级结构,使珍珠母呈现出远优于其组份材料的力学性能。因此,受到力学、材料学和生物学领域研究学者们的广泛关注。本文首先介绍了珍珠母材料的微结构特征及其基本变形机制和力学性能,然后分别从理论分析、数值模拟和实验制备三个角度出发综述了仿珍珠母复合材料的研究进展,重点讨论了这类仿生复合材料在变形过程中的强韧化机制,并分析了结构-性能之间的关系,最后对其可能的发展方向进行了展望。

     

  • 图  1  红鲍鱼(腹足纲)解剖图解示意图[7]

    Figure  1.  Schematic of red abalone (gastropod) molluscan shell anatomy[7]

    图  2  珍珠母的种类: (a) 柱状和片状珍珠母[8]; (b) 红鲍鱼中柱状珍珠母的光学图像[13]

    Figure  2.  Type of nacre’s structure: (a) Columnar and sheet nacre[8]; (b) Optical images of columnar nacre in abalone[13]

    图  3  珍珠母中的微结构: (a) 矿物桥[4]; (b) 纳米粗糙度[4]; (c) 波纹状片层[13]

    Figure  3.  Microstructures in nacre: (a) Mineral bridges[4]; (b) Nano-asperities[4]; (c) Tablet waviness[13]

    图  4  腹足纲(a)和双壳纲(b)珍珠母的生长示意图[28]及柱状(c)[4]和片状(d)[18]珍珠母的生长面的SEM图像

    Figure  4.  Schematic of growth of nacre in gastropods (a) and bivalves (b)[28] and SEM images of growth surface of nacre in gastropods (c)[4]and bivalves (d)[18]

    图  5  珍珠母中的变形机制[30]

    Figure  5.  Deformation mechanisms in nacre[30]

    图  6  拉剪链模型(a)[43]、受拉基体的描述((b)假想的片层[44]、 (c)单边接触[45]、 (d)真实模型[46]、(e)拉伸应力[50])及不同的交错排列方式(f)[51]

    Figure  6.  Tension-shear chain model (a)[43], description of the tension region of mortar ((b) Imaginary tablet[44]; (c) Unilateral contact[45]; (d) Actual mortar[46]; (e) Tensile stress[50]) and different staggering patterns (f)[51]

    L—Mineral platelet of length; t—Mineral platelet of thickness;t3—Matrix on sides of platelet of thickness; l1—Imaginary platelet of length; 2P—Fraction of total load carried by platelets; P1—Load carried by platelet ‘2’; ho—Thickness of organic layer; hp—Thicknesses of aragonite platelets; Lp—Length of aragonite platelets; σm—Maximum tensile stress; σc—Tensile stress induced by tension region; τc—Shear stress in shear region; ls—Effective shear length of a prism; L—Length of hard platelets

    图  7  复合材料中的材料和几何参数与能量耗散之间的关系(a)[63]及基体的剪切模量引入梯度设计后复合材料界面上的切应力(b)、弹性极限(c)和回弹性能的影响(d)[64]

    Figure  7.  Energy dissipation of composites related to material properties and microstructures (a)[63] and influence of functionally graded matrix on shear stress distribution along interface (b), elastic limit (c) and resilience (d) of composites[64]

    $\mathop \omega \limits^ \sim $, $\mathop \eta \limits^ \sim $—Critical dimensionless variables; $\phi $—Energy dissipation capability of system; Gmin—Minimum shear modulus; Gmax—Maximum shear modulus; h—Matrix thickness; u0—Displacement; τ—Shear stress; τf—Shear strength; ρ—Aspect ratio; σel—Effective stress; Wel—Strain energy density; ρ*, ρ**—Critical aspect ratio

    图  8  波纹状片层对仿生复合材料强度和韧性的影响((a), (b)); 控制失效模式转变的临界互锁角度(c); 临界互锁角度与片层长细比和组份材料强度比之间的关系(d)

    Figure  8.  Influence of tablet waviness on strength and toughness of biomimetic composites ((a), (b)); Critical interlocking angle determining transition of failure modes (c); Relationship between critical interlocking angle and tablet aspect ratio and components’ strength ratio (d)

    FEM—Finite element model; BM—Brick-and-Mortar; W—Wavy, SW—Super wavy; EW—Extreme wavy; θ—Tablet waviness angle; D/Dvw—Normalized toughness; D, H—Length and thickness of unit cell, respectively; 2l, hB—Length and thickness of brick, respectively; hM—Thickness of mortar layer; α—Inclined angle; σB—Normal stress on brick; σ—Effective stress for unit cell; αc—Critical value; τM—Shear stress; σM/σB—Strength ratio of mortar to brick

    图  9  交错模型的裂纹扩展行进中的桥接区和过程区和不同过程区参数下的无量纲阻力曲线(a)[75]; 仿生复合材料断裂韧性与名义片层长度和厚度之间的关系(b)[80]; 界面裂纹扩展与无量纲的初始重叠尺寸之间的关系(c)[82]

    Figure  9.  Bridging zone and process zone with an advancing crack in a staggered composite and non-dimensional crack resistance curves for different values of process zone parameter (a)[75]; Relationship between fracture toughness of bioinspired composites and normalized tablet length and thickness (b)[80]; Relationship between interfacial crack propagating and dimensionless original overlap length (c)[82]

    λ—Characteristic length; w—Half-width; J—Toughness of composite; J0—Intrinsic toughness of composite; α—Process zone parameter; a—Crack length; E—Modulus; σs—Strength; a—Non-dimensional crack advance; J—Non-dimensional toughness; ηss—Steady-state toughening ratio

    图  10  不同尺度上的分析方法示意图[24]

    Figure  10.  Schematics of simulation approaches in different scales[24]

    MD—Molecular dynamics; FEM—Finite element method; DEM—Discrete element method,

    图  11  复合材料的杨氏模量随界面强度的变化趋势(a)[92]; 块体材料和仿珍珠母材料在冲击过程中的速度曲线对比(b)[98];采用DEM的模拟结果与实验结果的对比(c)[106]

    Figure  11.  Variation of Young’s modulus of composite with interfacial strength (a)[92]; Comparison between velocity profiles of bulk and nacreous materials during impact (b)[98]; Comparison between numerical results using DEM and experimental ones (c)[106]

    RSM—Regularly staggered model; SSM—Stair-wise staggered model; LJ—Lennard-Jones

    图  12  冰模铸造方法(a)[117]; 增材制造方法(b)[30]; 3D打印试件(c)[147-148]

    Figure  12.  Freeze-casting method (a)[117]; Additive manufacturing method (b)[30]; 3D printed samples (c)[147-148]

    图  13  梯度设计的优势[169]

    Figure  13.  Advantages of gradient design[169]

    GRAD—Specimens with functional gradients; BM-SL—Specimens with a single-level brick-and-mortar design but without functional gradients; BM-GRAD-SL—Specimens with both a single-level brick-and-mortar design and functional gradients; BM-2L—Specimens with a two-level hierarchical brick-and-mortar design but without functional gradients; BM-GRAD-2L—Specimens incorporating both a two-level hierarchical brick-and-mortar design and functional gradients; U—Fracture energy; σmax—Fracture stress; L—Initial length of specimen; ρ'—Hard volume fraction; E—Stiffness

    图  14  采用进化优化算法(a)[174]和机器学习(b)进行仿生复合材料设计[177]

    Figure  14.  Bioinspired composite design evolutionary algorithm optimization (a)[174] and machine learning (b)[177]

    图  15  仿珍珠母材料的应用前景: (a)阻燃材料[180]; (b)形状记忆材料[188]; (c)组织工程[190]

    Figure  15.  Potential application of bioinspired nacre-like composite: (a) Flame retardant materials[180]; (b) Shape memory materials[188]; (c) Tissue engineering[190]

  • [1] CURREY J D. Mechanical properties of mother of pearl in tension[J]. Proceedings of the Royal society of London Series B: Biological sciences,1977,196(1125):443-463.
    [2] JACKSON A P, VINCENT J F V, TURNER R M. The mechanical design of nacre[J]. Proceedings of the Royal society of London Series B: Biological sciences,1988,234(1277):415-440.
    [3] SARIKAYA M, GUNNISON K E, YASREBI M, et al. Mechanical property-microstructural relationships in abalone shell[J]. MRS Online Proceedings Library Archive,1989,174:109-116. doi: 10.1557/PROC-174-109
    [4] MEYERS M A, LIN A Y M, CHEN P Y, et al. Mechanical strength of abalone nacre: Role of the soft organic layer[J]. Journal of the Mechanical Behavior of Biomedical Materials,2008,1(1):76-85. doi: 10.1016/j.jmbbm.2007.03.001
    [5] MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: Structure and mechanical properties[J]. Progress in Materials Science,2008,53(1):1-206. doi: 10.1016/j.pmatsci.2007.05.002
    [6] LOPEZ M I, MARTINEZ P E M, MEYERS M A. Organic interlamellar layers, mesolayers and mineral nanobridges: Contribution to strength in abalone (Haliotis rufescence) nacre[J]. Acta Biomaterialia,2014,10(5):2056-2064. doi: 10.1016/j.actbio.2013.12.016
    [7] ZAREMBA C M, BELCHER A M, FRITZ M, et al. Critical transitions in the biofabrication of abalone shells and flat pearls[J]. Chemistry of Materials,1996,8(3):679-690. doi: 10.1021/cm9503285
    [8] WANG R Z, SUO Z, EVANS A G, et al. Deformation mechanisms in nacre[J]. Journal of Materials Research,2001,16(9):2485-2493. doi: 10.1557/JMR.2001.0340
    [9] BARTHELAT F. Biomimetics for next generation materials[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2007,365(1861):2907-2919. doi: 10.1098/rsta.2007.0006
    [10] DUBEY D K, TOMAR V. Role of molecular level interfacial forces in hard biomaterial mechanics: A review[J]. Annals of Biomedical Engineering,2010,38(6):2040-2055. doi: 10.1007/s10439-010-9988-3
    [11] YOURDKHANI M, PASINI D, BARTHELAT F. Multiscale mechanics and optimization of gastropod shells[J]. Journal of Bionic Engineering,2011,8(4):357-368. doi: 10.1016/S1672-6529(11)60041-3
    [12] 许艺, 周俊兵, 宋凡. 珍珠母的微结构与力学行为研究进展[J]. 力学进展, 2008, 38(3):283-302.

    XU Yi, ZHOU Junbing, SONG Fan. Research advances of the microstructure and mechanical behavior of nacre[J]. Advances in Mechanics,2008,38(3):283-302(in Chinese).
    [13] BARTHELAT F, TANG H, ZAVATTIERI P D, et al. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure[J]. Journal of the Mechanics and Physics of Solids,2007,55(2):306-337. doi: 10.1016/j.jmps.2006.07.007
    [14] SCHÄFFER T E, IONESCU-ZANETTI C, PROKSCH R, et al. Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges?[J]. Chemistry of Materials, 1997, 9(8): 1731–1740.
    [15] BARTHELAT F, LI C M, COMI C, et al. Mechanical properties of nacre constituents and their impact on mechanical performance[J]. Journal of Materials Research,2006,21(8):1977-1986. doi: 10.1557/jmr.2006.0239
    [16] SONG F, ZHANG X H, BAI Y L. Microstructure and characteristics in the organic matrix layers of nacre[J]. Journal of Materials Research,2002,17(7):1567-1570. doi: 10.1557/JMR.2002.0233
    [17] SONG F, SOH A K, BAI Y L. Structural and mechanical properties of the organic matrix layers of nacre[J]. Biomaterials,2003,24(20):3623-3631. doi: 10.1016/S0142-9612(03)00215-1
    [18] CHECA A G, CARTWRIGHT J H E, WILLINGER M G. Mineral bridges in nacre[J]. Journal of Structural Biology,2011,176(3):330-339. doi: 10.1016/j.jsb.2011.09.011
    [19] LIN A Y M, CHEN P Y, MEYERS M A. The growth of nacre in the abalone shell[J]. Acta Biomaterialia,2008,4(1):131-138. doi: 10.1016/j.actbio.2007.05.005
    [20] 宋凡, 白以龙. 矿物桥与珍珠母结构力学性能[J]. 力学与实践, 1999, 21(6):18-21. doi: 10.3969/j.issn.1000-0879.1999.06.010

    SONG Fan, BAI Yilong. Mineral bridges versus the mechanical properties of nacre[J]. Mechanics in Engineering,1999,21(6):18-21(in Chinese). doi: 10.3969/j.issn.1000-0879.1999.06.010
    [21] 宋凡, 白以龙. 一类生物材料界面的强韧化分析[J]. 中国科学(A辑), 2001, 31(11):1302-1037.

    SONG Fan, BAI Yilong. Interfacial strengthening and toughening analysis of a class of biological materials[J]. Science in China (Series A),2001,31(11):1302-1037(in Chinese).
    [22] 宋凡, 白以龙. 一类生物材料界面的结构及其裂纹阻力[J]. 力学与实践, 2002, 24(6):24-26.

    SONG Fan, BAI Yilong. Mineral bridges versus the mechanical properties of nacre[J]. Mechanics in Engineering,2002,24(6):24-26(in Chinese).
    [23] SHAO Y, ZHAO H P, FENG X Q. Optimal characteristic nanosizes of mineral bridges in mollusk nacre[J]. RSC Advances,2014,4(61):32451-32456. doi: 10.1039/C4RA04902K
    [24] ESPINOSA H D, RIM J E, BARTHELAT F, et al. Merger of structure and material in nacre and bone: Perspectives on de novo biomimetic materials[J]. Progress in Materials Science,2009,54(8):1059-1100. doi: 10.1016/j.pmatsci.2009.05.001
    [25] LUZ G M, MANO J F. Biomimetic design of materials and biomaterials inspired by the structure of nacre[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2009,367(1893):1587-1605. doi: 10.1098/rsta.2009.0007
    [26] LUZ G M, MANO J F. Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials[J]. Composites Science and Technology,2010,70(13):1777-1788. doi: 10.1016/j.compscitech.2010.05.013
    [27] BLANK S, ARNOLDI M, KHOSHNAVAZ S, et al. The nacre protein perlucin nucleates growth of calcium carbonate crystals[J]. Journal of microscopy,2003,212(3):280-291. doi: 10.1111/j.1365-2818.2003.01263.x
    [28] CHECA A G, CARTWRIGHT J H E, WILLINGER M G. The key role of the surface membrane in why gastropod nacre grows in towers[J]. Proceedings of the National Academy of Sciences,2009,106(1):38-43. doi: 10.1073/pnas.0808796106
    [29] FRITZ M, BELCHER A M, RADMACHER M, et al. Flat pearls from biofabrication of organized composites on inorganic substrates[J]. Nature,1994,371(6492):49-51. doi: 10.1038/371049a0
    [30] WEGST U G K, HAO B, EDUARDO S, et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. doi: 10.1038/nmat4089
    [31] WANG R Z, WEN H B, CUI F Z, et al. Observations of damage morphologies in nacre during deformation and fracture[J]. Journal of Materials Science,1995,30(9):2299-2304. doi: 10.1007/BF01184577
    [32] MEYERS M A, CHAWLA K K. Mechanical behavior of materials (2nd edition)[M]. New York: Cambridge University Press, 2008.
    [33] KATTI K S, KATTI D R, PRADHAN S M, et al. Platelet interlocks are the key to toughness and strength in nacre[J]. Journal of Materials Research,2005,20(5):1097-1100. doi: 10.1557/JMR.2005.0171
    [34] JACKSON A P, VINCENT J F V, TURNER R M. A physical model of nacre[J]. Composites Science and Technology,1989,36(3):255-266. doi: 10.1016/0266-3538(89)90024-9
    [35] MENIG R, MEYERS M H, MEYERS M A, et al. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells[J]. Acta Materialia,2000,48(9):2383-2398. doi: 10.1016/S1359-6454(99)00443-7
    [36] BRUET B J F, QI H J, BOYCE M C, et al. Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus[J]. Journal of Materials Research,2005,20(9):2400-2419. doi: 10.1557/jmr.2005.0273
    [37] KATTI K S, MOHANTY B, KATTI D R. Nanomechanical properties of nacre[J]. Journal of Materials Research,2006,21(5):1237-1242. doi: 10.1557/jmr.2006.0147
    [38] MOHANTY B, KATTI K S, KATTI D R, et al. Dynamic nanomechanical response of nacre[J]. Journal of Materials Research,2006,21(8):2045-2051. doi: 10.1557/jmr.2006.0247
    [39] LI X D, CHANG W C, CHAO Y J, et al. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone[J]. Nano Letters,2004,4(4):613-617. doi: 10.1021/nl049962k
    [40] XU Z H, LI X D. Deformation strengthening of biopolymer in nacre[J]. Advanced Functional Materials,2011,21(20):3883-3888. doi: 10.1002/adfm.201100167
    [41] SMITH B L, SCHÄFFER T E, VIANI M, et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites[J]. Nature,1999,399(6738):761-763. doi: 10.1038/21607
    [42] JIAO D, LIU Z Q, ZHU Y K, et al. Mechanical behavior of mother-of-pearl and pearl with flat and spherical laminations[J]. Materials Science and Engineering C,2016,68:9-17. doi: 10.1016/j.msec.2016.05.089
    [43] GAO H J, JI B H, JÄGER I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature[J]. Proceedings of the National Academy of Sciences,2003,100(10):5597-5600. doi: 10.1073/pnas.0631609100
    [44] KOTHA S P, KOTHA S, GUZELSU N. A shear-lag model to account for interaction effects between inclusions in composites reinforced with rectangular platelets[J]. Composites Science and Technology,2000,60(11):2147-2158. doi: 10.1016/S0266-3538(00)00114-7
    [45] BERTOLDI K, BIGONI D, DRUGAN W J. Nacre: An orthotropic and bimodular elastic material[J]. Composites Science and Technology,2008,68(6):1363-1375. doi: 10.1016/j.compscitech.2007.11.016
    [46] BEGLEY M R, PHILIPS N R, COMPTON B G, et al. Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites[J]. Journal of the Mechanics and Physics of Solids,2012,60(8):1545-1560. doi: 10.1016/j.jmps.2012.03.002
    [47] WILLIAM P J, KWEI R, PETZOLD L R, et al. GPU-based simulations of fracture in idealized brick and mortar composites[J]. Journal of the Mechanics and Physics of Solids,2015,80:68-85. doi: 10.1016/j.jmps.2015.03.011
    [48] ASKARINEJAD S, RAHBAR N. Mechanics of bioinspired lamellar structured ceramic/polymer composites: Experiments and models[J]. International Journal of Plasticity,2018,107:122-149. doi: 10.1016/j.ijplas.2018.04.001
    [49] ZHANG P, TO A C. Highly enhanced damping figure of merit in biomimetic hierarchical staggered composites[J]. Journal of Applied Mechanics,2013,81(5):051015.
    [50] ZHANG P, HEYNE M A, TO A C. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing[J]. Journal of the Mechanics and Physics of Solids,2015,83:285-300. doi: 10.1016/j.jmps.2015.06.015
    [51] QWAMIZADEH M, LIN M, ZHANG Z Q, et al. Bounds for the dynamic modulus of unidirectional composites with bioinspired staggered distributions of platelets[J]. Composite Structures,2017,167:152-165. doi: 10.1016/j.compstruct.2017.01.077
    [52] BARTHELAT F. Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size[J]. Journal of the Mechanics and Physics of Solids,2014,73:22-37. doi: 10.1016/j.jmps.2014.08.008
    [53] ZHANG Z Q, LIU B, HUANG Y G, et al. Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution[J]. Journal of the Mechanics and Physics of Solids,2010,58(10):1646-1660. doi: 10.1016/j.jmps.2010.07.004
    [54] GAO H J. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials[J]. International Journal of Fracture,2006,138(1-4):101-137. doi: 10.1007/s10704-006-7156-4
    [55] CHEN B, WU P D, GAO H J. A characteristic length for stress transfer in the nanostructure of biological composites[J]. Composites Science and Technology,2009,69(7–8):1160-1164.
    [56] YAO H M, SONG Z G, XU Z P, et al. Cracks fail to intensify stress in nacreous composites[J]. Composites Science and Technology,2013,81:24-29. doi: 10.1016/j.compscitech.2013.03.016
    [57] CUI S K, YANG Z Y, LU Z X. An analytical model for the bio-inspired nacreous composites with interlocked “brick-and-mortar”structures[J]. Composites Science and Technology,2020,193:108131. doi: 10.1016/j.compscitech.2020.108131
    [58] WEI X D, NARAGHI M, ESPINOSA H D. Optimal length scales emerging from shear load transfer in natural materials: Application to carbon-based nanocomposite design[J]. ACS Nano,2012,6(3):2333-2344. doi: 10.1021/nn204506d
    [59] NI Y, SONG Z Q, JIANG H Y, et al. Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths[J]. Journal of the Mechanics and Physics of Solids,2015,81:41-57. doi: 10.1016/j.jmps.2015.04.013
    [60] YANG W C, ZHANG X F, CHEN Y L, et al. Strength analysis of bio-inspired composites reinforced by regularly and randomly staggered platelets[J]. Composite Structures,2019,216:415-426. doi: 10.1016/j.compstruct.2019.03.007
    [61] BARTHELAT F, YIN Z, BUEHLER M J. Structure and mechanics of interfaces in biological materials[J]. Nature Reviews Materials,2016,1(4):1-16.
    [62] 王振兴, 原梅妮, 李立州, 等. 贝壳珍珠母增韧机理研究进展[J]. 材料导报, 2015, 29(8):98-102.

    WANG Zhenxing, YUAN Meini, LI Lizhou, et al. Research progress of toughening mechanisms of nacre shell[J]. Materials Review,2015,29(8):98-102(in Chinese).
    [63] LIU J J, ZHU W Q, YU Z L, et al. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites[J]. Acta Biomaterialia,2018,74:270-279. doi: 10.1016/j.actbio.2018.04.031
    [64] YU Z L, LIU J J, ZHU W Q, et al. Optimizing mechanical properties of bio-inspired composites through functionally graded matrix and microstructure design[J]. Composite Structures,2018,206:621-627. doi: 10.1016/j.compstruct.2018.08.064
    [65] PIMENTA S, ROBINSON P. An analytical shear-lag model for composites with ‘brick-and-mortar’architecture considering non-linear matrix response and failure[J]. Composites Science and Technology,2014,104:111-124. doi: 10.1016/j.compscitech.2014.09.001
    [66] ALMASKARI N S, MCADAMS D A, REDDY J N. Modeling of a biological material nacre: Waviness stiffness model[J]. Materials Science and Engineering C,2017,70:772-776. doi: 10.1016/j.msec.2016.09.061
    [67] ALMASKARI N S, MCADAMS D A, REDDY J N. Modeling of a biological material nacre: Waviness toughness model[J]. Mechanics of Advanced Materials and Structures,2018,26(9):1-7.
    [68] BARTHELAT F, ZHU D J. A novel biomimetic material duplicating the structure and mechanics of natural nacre[J]. Journal of Materials Research,2011,26(10):1203-1215. doi: 10.1557/jmr.2011.65
    [69] ASKARINEJAD S, CHOSHALI H A, FLAVIN C, et al. Effects of tablet waviness on the mechanical response of architected multilayered materials: Modeling and experiment[J]. Composite Structures,2018,195:118-125. doi: 10.1016/j.compstruct.2018.04.047
    [70] LIU F, LI T T, JIA Z, et al. Combination of stiffness, strength, and toughness in 3D printed interlocking nacre-like composites[J]. Extreme Mechanics Letters,2019,35:100621.
    [71] GHAZLAN A, NGO T D, TRAN P. Influence of interfacial geometry on the energy absorption capacity and load sharing mechanisms of nacreous composite shells[J]. Composite Structures,2015,132:299-309. doi: 10.1016/j.compstruct.2015.05.045
    [72] CUI S k, LU Z X, YANG Z Y. Effect of interlocking structure on mechanical properties of bio-inspired nacreous composites[J]. Composite Structures,2019,226:111260. doi: 10.1016/j.compstruct.2019.111260
    [73] PRO J W, BARTHELAT F. The fracture mechanics of biological and bioinspired materials[J]. MRS Bulletin,2019,44(1):46-52.
    [74] RABIEI R, BEKAH S, BARTHELAT F. Failure mode transition in nacre and bone-like materials[J]. Acta Biomaterialia,2010,6(10):4081-4089. doi: 10.1016/j.actbio.2010.04.008
    [75] BARTHELAT F, RABIEI R. Toughness amplification in natural composites[J]. Journal of The Mechanics and Physics of Solids,2011,59(4):829-840. doi: 10.1016/j.jmps.2011.01.001
    [76] YAN Y, NAKATANI A. Stability controlled crack initiation in nacre-like composite materials[J]. Journal of the Mechanics and Physics of Solids,2019,125:591-612. doi: 10.1016/j.jmps.2019.01.003
    [77] YAN Y, NAKATANI A. Unlocalized crack initiation and propagation in staggered biomaterials[J]. Journal of Biomechanics,2019,86:183-192. doi: 10.1016/j.jbiomech.2019.02.003
    [78] YAN Y, NAKATANI A. Crack sensitivity of nacre-like laminate composite materials: Monte carlo simulation based on stability theory[J]. International Journal of Solids and Structures,2020,202:646-659. doi: 10.1016/j.ijsolstr.2020.06.043
    [79] MENG Q H, LI B, LI T, et al. A multiscale crack-bridging model of cellulose nanopaper[J]. Journal of the Mechanics and Physics of Solids,2017,103:22-39.
    [80] SHAO Y, ZHAO H P, FENG X Q, et al. Discontinuous crack-bridging model for fracture toughness analysis of nacre[J]. Journal of the Mechanics and Physics of Solids,2012,60(8):1400-1419. doi: 10.1016/j.jmps.2012.04.011
    [81] SHAO Y, ZHAO H P, FENG X Q. On flaw tolerance of nacre: A theoretical study[J]. Journal of the Royal Society Interface,2014,11(92):20131016. doi: 10.1098/rsif.2013.1016
    [82] YU Z L, LIU J J, WEI X D. Unraveling crack stability and strain localization in staggered composites by fracture analysis on the shear-lag model[J]. Composites Science and Technology,2018,156:262-268. doi: 10.1016/j.compscitech.2017.12.035
    [83] YU Z L, LIU J J, WEI X D. A general property-structure relationship from crack stability analysis on hybrid staggered composites with elasto-plastic matrices[J]. Composite Structures,2020,240:112071. doi: 10.1016/j.compstruct.2020.112071
    [84] FRATZL P, GUPTA H S, FISCHER F D, et al. Hindered crack propagation in materials with periodically varying young’s modulus: Lessons from biological materials[J]. Advanced Materials,2007,19(18):2657-2661. doi: 10.1002/adma.200602394
    [85] 吴为, 徐柄桐, 张荣霞, 等. 交叠增韧仿生复合材料的研究进展[J]. 材料导报, 2016, 30(19):1-6.

    WU Wei, XU Bingtong, ZHANG Rongxia, et al. State-of-the-art in biomimetic composites toughened by overlapping[J]. Materials Review,2016,30(19):1-6(in Chinese).
    [86] SEN D, BUEHLER M J. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks[J]. Scientific Reports,2011,1:35.
    [87] DIMAS L S, BUEHLER M J. Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials[J]. Bioinspiration & Biomimetics,2012,7(3):036024.
    [88] DIMAS L S, BUEHLER M J. Tough and stiff composites with simple building blocks[J]. Journal of Materials Research,2013,28(10):1295-1303. doi: 10.1557/jmr.2013.88
    [89] MIRZAEIFAR R, DIMAS L S, QIN Z, et al. Defect-tolerant bioinspired hierarchical composites: Simulation and experiment[J]. ACS Biomaterials Science and Engineering,2015,1(5):295-304. doi: 10.1021/ab500120f
    [90] MATHIAZHAGAN S, ANUP S. Influence of platelet aspect ratio on the mechanical behaviour of bio-inspired nanocomposites using molecular dynamics[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,59:21-40. doi: 10.1016/j.jmbbm.2015.12.008
    [91] MATHIAZHAGAN S, ANUP S. Atomistic simulations of length-scale effect of bioinspired brittle-matrix nanocomposite models[J]. Journal of Engineering Mechanics,2018,144(11):04018104. doi: 10.1061/(ASCE)EM.1943-7889.0001533
    [92] MATHIAZHAGAN S, ANUP S. Effect of interface strength on the mechanical behaviour of bio-inspired composites: A molecular dynamics study[J]. Mechanics of Materials,2019,132:93-100. doi: 10.1016/j.mechmat.2019.02.016
    [93] YANG Z Y, WANG D D, LU Z X, et al. Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites[J]. Applied Physics Letters,2016,109(19):191909. doi: 10.1063/1.4967793
    [94] LAI Z B, BAI R X, LEI Z K, et al. Interfacial mechanical behaviour of protein-mineral nanocomposites: A molecular dynamics investigation[J]. Journal of Biomechanics,2018,73:161-167. doi: 10.1016/j.jbiomech.2018.03.044
    [95] LIU N, ZENG X W, PIDAPARTI R, et al. Tough and strong bioinspired nanocomposites with interfacial cross-links[J]. Nanoscale,2016,8(43):18531-18540. doi: 10.1039/C6NR06379A
    [96] LEMANIS R, ZLOTNIKOV I. Finite element analysis as a method to study molluscan shell mechanics[J]. Advanced Engineering Materials,2018,20(3):1700939. doi: 10.1002/adem.201700939
    [97] ZHANG Y M, YAO H M, ORTIZ C, et al. Bio-inspired interfacial strengthening strategy through geometrically interlocking designs[J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,15:70-77. doi: 10.1016/j.jmbbm.2012.07.006
    [98] FLORES-JOHNSON E A, SHEN L M, GUIAMATSIA I, et al. Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates[J]. Composites Science and Technology,2014,96:13-22. doi: 10.1016/j.compscitech.2014.03.001
    [99] FLORES-JOHNSON E A, SHEN L M, GUIAMATSIA I, et al. A numerical study of bioinspired nacre-like composite plates under blast loading[J]. Composite Structures,2015,126:329-336. doi: 10.1016/j.compstruct.2015.02.083
    [100] TRAN P, NGO T D, MENDIS P. Bio-inspired composite structures subjected to underwater impulsive loading[J]. Computational Materials Science,2014,82:134-139. doi: 10.1016/j.commatsci.2013.09.033
    [101] GHAZLAN A, NGO T D, TRAN P. Three-dimensional Voronoi model of a nacre-mimetic composite structure under impulsive loading[J]. Composite Structures,2016,153:278-296. doi: 10.1016/j.compstruct.2016.06.020
    [102] TRAN P, NGO T D, GHAZLAN A, et al. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings[J]. Composites Part B: Engineering,2017,108:210-223. doi: 10.1016/j.compositesb.2016.09.083
    [103] GHAZLAN A, NGO T D, TRAN P. Influence of geometric and material parameters on the behavior of nacreous composites under quasi-static loading[J]. Composite Structures,2018,183:457-482. doi: 10.1016/j.compstruct.2017.05.015
    [104] WU K J, ZHENG Z J, ZHANG S S, et al. Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure[J]. Materials & Design,2019,163:107532.
    [105] CHANDLER M Q, CHENG J C. Discrete element modeling of microstructure of nacre[J]. Computational Particle Mechanics,2018,5(2):191-201. doi: 10.1007/s40571-017-0162-7
    [106] ABID N, MIRKHALAF M, BARTHELAT F. Discrete-element modeling of nacre-like materials: Effects of random microstructures on strain localization and mechanical performance[J]. Journal of the Mechanics and Physics of Solids,2018,112:385-402. doi: 10.1016/j.jmps.2017.11.003
    [107] ABID N, PRO J W, BARTHELAT F. Fracture mechanics of nacre-like materials using discrete-element models: Effects of microstructure, interfaces and randomness[J]. Journal of the Mechanics and Physics of Solids,2019,124:350-365. doi: 10.1016/j.jmps.2018.10.012
    [108] PRO J W, LIM R K, PETZOLD L R, et al. The impact of stochastic microstructures on the macroscopic fracture properties of brick and mortar composites[J]. Extreme Mechanics Letters,2015,5:1-9. doi: 10.1016/j.eml.2015.09.001
    [109] LIM R K, PRO J W, BEGLEY M R, et al. High-performance simulation of fracture in idealized “brick and mortar”composites using adaptive monte carlo minimization on the GPU[J]. International Journal of High Performance Computing Applications,2016,30(2):186-199. doi: 10.1177/1094342015593395
    [110] RADI K, JAUFFRÈS D, DEVILLE S, et al. Elasticity and fracture of brick and mortar materials using discrete element simulations[J]. Journal of the Mechanics and Physics of Solids,2019,126:101-116. doi: 10.1016/j.jmps.2019.02.009
    [111] RADI K, JAUFFRES D, DEVILLE S, et al. Strength and toughness trade-off optimization of nacre-like ceramic composites[J]. Composites Part B: Engineering,2020,183:107699. doi: 10.1016/j.compositesb.2019.107699
    [112] DEVILLE S, SAIZ E, TOMSIA A P. Using ice to mimic nacre: From structural applications to artificial bone[M]//BÄUERLEIN E. Handbook of biomineralization: Biomimetic and bioinspired chemistry. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2007: 175-192.
    [113] SARIKAYA M, AKSAY I A. Nacre of abalone shell: A natural multifunctional nanolaminated ceramic-polymer composite material[M]//CASE S T. Structure, cellular synthesis and assembly of biopolymers. Berlin: Springer Press, 1992: 1–26.
    [114] KATTI K S, KATTI D R, MOHANTY B. Biomimetic lessons learnt from nacre[M]//MUKHERJEE A. Biomimetics learning from nature. Rijeka: InTech, 2010: 193-216.
    [115] MAYER G. Rigid biological systems as models for synthetic composites[J]. Science,2005,310(5751):1144-1147. doi: 10.1126/science.1116994
    [116] 孙娜, 吴俊涛, 江雷. 贝壳珍珠层及其仿生材料的研究进展[J]. 高等学校化学学报, 2011, 32(10):2231-2239.

    SUN Na, WU Juntao, JIANG Lei. Research progress of nacre and biomimetic synthesis of nacre-like materials[J]. Chemical Journal of Chinese Universities,2011,32(10):2231-2239(in Chinese).
    [117] DEVILLE S, SAIZ E, NALLA R K, et al. Freezing as a path to build complex composites[J]. Science,2006,311(5760):515-518. doi: 10.1126/science.1120937
    [118] BOUVILLE F, MAIRE E, MEILLE S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Materials,2014,13(5):508-514. doi: 10.1038/nmat3915
    [119] MUNCH E, LAUNEY M E, ALSEM D H, et al. Tough, bio-inspired hybrid materials[J]. Science,2008,322(5907):1516-1520. doi: 10.1126/science.1164865
    [120] MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science,2016,354(6308):107-110. doi: 10.1126/science.aaf8991
    [121] NARDUCCI F, PINHO S T. Exploiting nacre-inspired crack deflection mechanisms in CFRP via micro-structural design[J]. Composites Science and Technology,2017,153:178-189. doi: 10.1016/j.compscitech.2017.08.023
    [122] NARDUCCI F, PINHO S T. Interaction between nacre-like CFRP mesolayers and long-fibre interlayers[J]. Composite Structures,2018,200:921-928. doi: 10.1016/j.compstruct.2018.05.103
    [123] NARDUCCI F, LEE K, PINHO S T. Realising damage-tolerant nacre-inspired CFRP[J]. Journal of the Mechanics and Physics of Solids,2018,116:391-402. doi: 10.1016/j.jmps.2018.04.004
    [124] SHAO G F, HANAOR D, SHEN X D, et al. Freeze casting: From low-dimensional building blocks to aligned porous structures: A review of novel materials, methods, and applications[J]. Advanced Materials,2020,32(17):1907176. doi: 10.1002/adma.201907176
    [125] BONDERER L J, STUDART A R, GAUCKLER L J. Bioinspired design and assembly of platelet reinforced polymer films[J]. Science,2008,319(5866):1069-1073. doi: 10.1126/science.1148726
    [126] RODRIGUES J R, ALVES N M, MANO J F. Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications[J]. Materials Science and Engineering C,2017,76:1263-1273. doi: 10.1016/j.msec.2017.02.043
    [127] LI Y Q, YU T, YANG T Y, et al. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties[J]. Advanced Materials,2012,24(25):3426-3431. doi: 10.1002/adma.201200452
    [128] SELLINGER A, WEISS P M, NGUYEN A, et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre[J]. Nature,1998,394(6690):256-260. doi: 10.1038/28354
    [129] TRITSCHLER U, COLFEN H. Self-assembled hierarchically structured organic-inorganic composite systems[J]. Bioinspiration & Biomimetics,2016,11(3):035002.
    [130] CHEN L, BALLARINI R, KAHN H, et al. Bioinspired micro-composite structure[J]. Journal of Materials Research,2007,22(1):124-131. doi: 10.1557/jmr.2007.0016
    [131] 赵赫威, 郭林. 仿贝壳珍珠母层状复合材料的制备及应用[J]. 科学通报, 2017, 62(6):576-589. doi: 10.1360/N972016-00754

    ZHAO Hewei, GUO Lin. Synthesis and applications of layered structural composites inspired by nacre[J]. Chinese Science Bulletin,2017,62(6):576-589(in Chinese). doi: 10.1360/N972016-00754
    [132] WAT A, FERRARO C, DENG X, et al. Bioinspired nacre-like alumina with a metallic nickel vompliant phase fabricated by spark-plasma sintering[J]. Small,2019,15(31):1900573. doi: 10.1002/smll.201900573
    [133] WAT A, LEE J I, RYU C W, et al. Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phase[J]. Nature Communications,2019,10(1):961. doi: 10.1038/s41467-019-08753-6
    [134] SUN M Q, SHEN P, JIANG Q C. Microstructures and mechanical characterizations of high-performance nacre-inspired Al/Al2O3 composites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:465-473. doi: 10.1016/j.compositesa.2019.04.007
    [135] GROSSMAN M, PIVOVAROV D, BOUVILLE F, et al. Hierarchical toughening of nacre-like composites[J]. Advanced Functional Materials,2019,29(9):1806800. doi: 10.1002/adfm.201806800
    [136] TANG Z Y, KOTOV N A, MAGONOV S, et al. Nanostructured artificial nacre[J]. Nature Materials,2003,2(6):413-418. doi: 10.1038/nmat906
    [137] WALTHER A, BJURHAGER I, MALHO J M, et al. Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties[J]. Angewandte Chemie International Edition,2010,49(36):6448-6453. doi: 10.1002/anie.201001577
    [138] CHEN P Y, MCKITTRICK J, MEYERS M A. Biological materials: Functional adaptations and bioinspired designs[J]. Progress in Materials Science,2012,57(8):1492-1704. doi: 10.1016/j.pmatsci.2012.03.001
    [139] SARVESTANI H Y, MIRKHALAF M, AKBARZADEH A H, et al. Multilayered architectured ceramic panels with weak interfaces: Energy absorption and multi-hit capabilities[J]. Materials & Design,2019,167:107627.
    [140] MIAO T Y, SHEN L M, XU Q F, et al. Ballistic performance of bioinspired nacre-like aluminium composite plates[J]. Composites Part B: Engineering,2019,177:107382. doi: 10.1016/j.compositesb.2019.107382
    [141] JAVAN A R, SEIFI H, XU S, et al. The impact behaviour of plate-like assemblies made of new interlocking bricks: An experimental study[J]. Materials & Design,2017,134:361-373.
    [142] JAVAN A R, SEIFI H, XU S, et al. Impact behaviour of plate-like assemblies made of new and existing interlocking bricks: A comparative study[J]. International Journal of Impact Engineering,2018,116:79-93. doi: 10.1016/j.ijimpeng.2018.02.008
    [143] REZAEE JAVAN A, SEIFI H, LIN X S, et al. Mechanical behaviour of composite structures made of topologically interlocking concrete bricks with soft interfaces[J]. Materials & Design,2020,186:108347.
    [144] MIRKHALAF M, ZHOU T, BARTHELAT F. Simultaneous improvements of strength and toughness in topologically interlocked ceramics[J]. Proceedings of the National Academy of Sciences,2018,115(37):9128-9133. doi: 10.1073/pnas.1807272115
    [145] MIRKHALAF M, TANGUAY J, BARTHELAT F. Carving 3D architectures within glass: Exploring new strategies to transform the mechanics and performance of materials[J]. Extreme Mechanics Letters,2016,7:104-113. doi: 10.1016/j.eml.2016.02.016
    [146] 吴和成, 肖毅华. 陶瓷和仿珍珠母陶瓷/聚脲复合结构的冲击损伤对比[J]. 高压物理学报, 2020, 34(2):024201. doi: 10.11858/gywlxb.20190808

    WU Hecheng, XIAO Yihua. Comparison of impact damage between ceramic structure and nacre-like ceramic/polyurea composite structure[J]. Chinese Journal of High Pressure Physics,2020,34(2):024201(in Chinese). doi: 10.11858/gywlxb.20190808
    [147] DIMAS L S, BRATZEL G H, EYLON I, et al. Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing[J]. Advanced Functional Materials,2013,23(36):4629-4638. doi: 10.1002/adfm.201300215
    [148] DIMAS L S, BUEHLER M J. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties[J]. Soft Matter,2014,10(25):4436-4442. doi: 10.1039/c3sm52890a
    [149] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [150] YANG Y, SONG X, LI X J, et al. Recent progress in biomimetic additive manufacturing technology: From materials to functional structures[J]. Advanced Materials,2018,30(36):1706539. doi: 10.1002/adma.201706539
    [151] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters,2016,9:317-323. doi: 10.1016/j.eml.2016.09.006
    [152] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites[J]. Advanced Materials,2017,29(28):1700060. doi: 10.1002/adma.201700060
    [153] KO K, JIN S, LEE S E, et al. Bio-inspired bimaterial composites patterned using three-dimensional printing[J]. Composites Part B: Engineering,2019,165:594-603. doi: 10.1016/j.compositesb.2019.02.008
    [154] FRØLICH S, WEAVER J C, DEAN M N, et al. Uncovering nature’s design strategies through parametric modeling, multi-material 3D printing, and mechanical testing[J]. Advanced Engineering Materials,2017,19(6):1600848.
    [155] MARTINI R, BALIT Y, BARTHELAT F. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing[J]. Acta Biomaterialia,2017,55:360-372. doi: 10.1016/j.actbio.2017.03.025
    [156] DJUMAS L, SIMON G P, ESTRIN Y, et al. Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry[J]. Scientific Reports,2017,7(1):1-11. doi: 10.1038/s41598-016-0028-x
    [157] STUDART A R. Biological and bioinspired composites with spatially tunable heterogeneous architectures[J]. Advanced Functional Materials,2013,23(36):4423-4436. doi: 10.1002/adfm.201300340
    [158] GU G X, SU I, SHARMA S, et al. Three-dimensional-printing of bio-inspired composites[J]. Journal of Biomechanical Engineering,2016,138(2):021006. doi: 10.1115/1.4032423
    [159] NALEWAY S E, PORTER M M, MCKITTRICK J, et al. Structural design elements in biological materials: Application to bioinspiration[J]. Advanced Materials,2015,27(37):5455-5476. doi: 10.1002/adma.201502403
    [160] LIU Z Q, MEYERS M A, ZHANG Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications[J]. Progress in Materials Science,2017,88:467-498. doi: 10.1016/j.pmatsci.2017.04.013
    [161] 温变英. 自然界中的梯度材料及其仿生研究[J]. 材料导报, 2008, 22(s2):351-356.

    WEN Bianying. Naturally functionally gradient materials and their biomimetic study[J]. Materials Review,2008,22(s2):351-356(in Chinese).
    [162] GIBSON L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society Interface,2012,9(76):2749-2766. doi: 10.1098/rsif.2012.0341
    [163] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer[J]. Science,2012,336(6086):1275-1280. doi: 10.1126/science.1218764
    [164] CHAN Y L, NGAN A H W, KING N M. Nano-scale structure and mechanical properties of the human dentine-enamel junction[J]. Journal of The Mechanical Behavior of Biomedical Materials,2011,4(5):785-795. doi: 10.1016/j.jmbbm.2010.09.003
    [165] FANG J G, GAO Y K, AN X Z, et al. Design of transversely-graded foam and wall thickness structures for crashworthiness criteria[J]. Composites Part B: Engineering,2016,92:338-349. doi: 10.1016/j.compositesb.2016.02.006
    [166] WANG C Y, LI Y, ZHAO W Z, et al. Structure design and multi-objective optimization of a novel crash box based on biomimetic structure[J]. International Journal of Mechanical Sciences,2018,138-139:489-501.
    [167] MENCATTELLI L, PINHO S T. Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting diffused sub-critical helicoidal damage[J]. Composites Science and Technology,2019,182:107684. doi: 10.1016/j.compscitech.2019.107684
    [168] MENCATTELLI L, PINHO S T. Ultra-thin-ply CFRP Bouligand bio-inspired structures with enhanced load-bearing capacity, delayed catastrophic failure and high energy dissipation capability[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105655. doi: 10.1016/j.compositesa.2019.105655
    [169] MIRZAALI M J, SALDIVAR M C, NAVA A H D L, et al. Multi-material 3D printing of functionally graded hierarchical soft-hard composites[J]. Advanced Engineering Materials,2020,22(7):1901142.
    [170] MIRZAALI M J, NAVA A H D L, GUNASHEKAR D, et al. Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing[J]. Composite Structures,2020,237:111867. doi: 10.1016/j.compstruct.2020.111867
    [171] TAPSE S, ANUP S. Bio-inspired composites with functionally graded platelets exhibit enhanced stiffness[J]. Bioinspiration & Biomimetics,2017,13(1):016011.
    [172] GUO X, GAO H J. Bio-inspired material design and optimization[C]//IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Dordrecht: Springer Publishers, 2006, 137: 439-453.
    [173] AL-MASKARI N S, MCADAMS D A, REDDY J N. Modeling of a biological material nacre: Multi-objective optimization model[J]. Mechanics of Advanced Materials and Structures,2019:DOI: 10.1080/15376494.2019.1568649.
    [174] COSTAGLIOLA G, GUARINO R, BOSIA F, et al. Evolutionary algorithm optimization of staggered biological or biomimetic composites using the random fuse model[J]. Physical Review Applied,2020,13(3):034049. doi: 10.1103/PhysRevApplied.13.034049
    [175] WANG Z, CHEGDANI F, YALAMARTI N, et al. Acoustic emission characterization of natural fiber reinforced plastic composite machining using a random forest machine learning model[J]. Journal of Manufacturing Science and Engineering-,2020,142(3):031003. doi: 10.1115/1.4045945
    [176] DAGHIGH V, LACY T E, DAGHIGH H, et al. Heat deflection temperatures of bio-nano-composites using experiments and machine learning predictions[J]. Materials Today Communications,2020,22:100789. doi: 10.1016/j.mtcomm.2019.100789
    [177] GU G X, CHEN C, RICHMOND D J, et al. Bioinspired hierarchical composite design using machine learning: Simulation, additive manufacturing, and experiment[J]. Materials Horizons,2018,5(5):939-945. doi: 10.1039/C8MH00653A
    [178] CHEN C, GU G X. Effect of constituent materials on composite performance: Exploring design strategies via machine learning[J]. Advanced Theory and Simulations,2019,2(6):1900056.
    [179] WANG D, PENG H Y, WU Y, et al. Bioinspired lamellar barriers for significantly improving the flame-retardant properties of nanocellulose composites[J]. ACS Sustainable Chemistry & Engineering,2020,8(11):4331-4336.
    [180] LIU Y C, LU M P, HU Z R, et al. Casein phosphopeptide-biofunctionalized graphene oxide nanoplatelets based cellulose green nanocomposites with simultaneous high thermal conductivity and excellent flame retardancy[J]. Chemical Engineering Journal,2020,382:122733. doi: 10.1016/j.cej.2019.122733
    [181] LI T T, WANG Y T, PENG H K, et al. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing,2020,128:105685. doi: 10.1016/j.compositesa.2019.105685
    [182] GAO W W, ZHAO N F, YU T, et al. High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading[J]. Carbon,2020,157:570-577. doi: 10.1016/j.carbon.2019.10.051
    [183] DHAR P, PHIRI J, SZILVAY G R, et al. Genetically engineered protein based nacre-like nanocomposites with superior mechanical and electrochemical performance[J]. Journal of Materials Chemistry A,2020,8(2):656-669. doi: 10.1039/C9TA10881E
    [184] WU C, ZHOU T Z, DU Y, et al. Strong bioinspired HPA-rGO nanocomposite films via interfacial interactions for flexible supercapacitors[J]. Nano Energy,2019,58:517-527. doi: 10.1016/j.nanoen.2019.01.055
    [185] CUI S Q, SONG N, SHI L Y, et al. Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds[J]. ACS Sustainable Chemistry & Engineering,2020,8(16):6363-6370.
    [186] XIAO G, DI J T, LI H, et al. Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film[J]. Composites Science and Technology,2020,189:108021. doi: 10.1016/j.compscitech.2020.108021
    [187] WANG Y J, XIA S, XIAO G, et al. High-loading boron nitride-based bio-Inspired paper with pastic-like ductility and metal-like thermal conductivity[J]. ACS Applied Materials & Interfaces,2020,12(11):13156-13164.
    [188] HUANG C J, PENG J S, CHENG Y R, et al. Ultratough nacre-inspired epoxy-graphene composites with shape memory properties[J]. Journal of Materials Chemistry A,2019,7(6):2787-2794. doi: 10.1039/C8TA10725D
    [189] PANG J H, WANG X P, LI L, et al. Tough and conductive bio-based artificial nacre via synergistic effect between water-soluble cellulose acetate and graphene[J]. Carbohydrate Polymers,2019,206:319-327. doi: 10.1016/j.carbpol.2018.10.116
    [190] DU G L, MAO A R, YU J H, et al. Nacre-mimetic composite with intrinsic self-healing and shape-programming capability[J]. Nature Communications,2019,10(1):800. doi: 10.1038/s41467-019-08643-x
  • 加载中
图(15)
计量
  • 文章访问数:  2112
  • HTML全文浏览量:  1083
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 录用日期:  2020-12-01
  • 网络出版日期:  2020-12-09
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回