留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯基聚合物复合电解质的设计、性能及其应用研究进展

杨富杰 王亮 阮文红 章明秋 容敏智

杨富杰, 王亮, 阮文红, 等. 石墨烯基聚合物复合电解质的设计、性能及其应用研究进展[J]. 复合材料学报, 2021, 38(3): 680-697. doi: 10.13801/j.cnki.fhclxb.20201126.002
引用本文: 杨富杰, 王亮, 阮文红, 等. 石墨烯基聚合物复合电解质的设计、性能及其应用研究进展[J]. 复合材料学报, 2021, 38(3): 680-697. doi: 10.13801/j.cnki.fhclxb.20201126.002
YANG Fujie, WANG Liang, RUAN Wenhong, et al. Research progress on design, performance and application of graphene based polymer composite electrolytes[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 680-697. doi: 10.13801/j.cnki.fhclxb.20201126.002
Citation: YANG Fujie, WANG Liang, RUAN Wenhong, et al. Research progress on design, performance and application of graphene based polymer composite electrolytes[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 680-697. doi: 10.13801/j.cnki.fhclxb.20201126.002

石墨烯基聚合物复合电解质的设计、性能及其应用研究进展

doi: 10.13801/j.cnki.fhclxb.20201126.002
基金项目: 国家自然科学基金 (52033011;51773229;51473186;52003307);广州市科技计划项目(201802010009;201902010050)
详细信息
    通讯作者:

    阮文红,博士,教授,博士生导师,研究方向为聚合物复合材料及功能材料  E-mail:cesrwh@mail.sysu.edu.cn

    章明秋,博士,教授,博士生导师,研究方向为高分子及高分子复合材料的基础理论和应用基础  E-mail:ceszmq@mail.sysu.edu.cn

  • 中图分类号: TB332

Research progress on design, performance and application of graphene based polymer composite electrolytes

  • 摘要: 固态电化学器件具有柔性好、安全性能高及能量密度高等优点,属于极有前景的新一代化学能源器件。固态电解质是实现电化学器件固态化的关键,其中石墨烯基聚合物复合电解质由传统聚合物电解质发展而来,是一类含有石墨烯纳米填料和聚合物基体的新型固态电解质,具有较高的离子电导率、良好的加工性能及优异的界面特性,现已成为固态电化学器件研发中备受关注的电解质材料。本文着重讨论了近年来石墨烯基聚合物复合电解质的结构设计、性能机制及在各种电化学储能器件中应用的研究进展。

     

  • 图  1  氧化石墨烯(GO)的结构示意图[11]

    Figure  1.  Structural schematic of graphene oxide (GO)[11]

    图  2  SPI/PIL(NTFSI)-G/PIL膜的离子传输机制(a)[14]; 利用功能石墨烯实现Nafion膜可调节传输特性的策略(b)[15]

    Figure  2.  Ion transport mechanism in membrane of SPI/PIL(NTFSI)-G/PIL (a)[14]; Strategy for realizing tunable transport properties of Nafion membrane using functionalized graphene (b)[15]

    SPI—Sulfonated polyimide; PILs—Protic ionic liquids; PIL(NTFSI)-G—Protic ionic liquid based composite membranes with ionic liquid modified graphene sheets; GO—Graphene oxide; SGO—Sulfonated GO; GON—GO/Nafion; SGON—SGO/Nafion

    图  3  GO-LBL自支撑薄膜制备及组装示意图[17]

    Figure  3.  Schematic representation of fabrication and assembly of free-standing GO-LBL membrane[17]

    LBL—Layer-by-layer; PHS—Poly(4-vinylphenol); PAH—Poly(allylamine hydrochloride); PSS—Poly(sodium 4-styrene sulfonate)

    图  4  Li+/PEO络合物(a)、GO插层复合物((b)~(d))的结构及EO/GO界面上(e)锂离子的快速传输[39]

    Figure  4.  Structures of ethylene oxide/lithium-ion (a), GO-intercalated composites ((b)–(d)), and fast transfer of lithium-ion at EO/GO interface (e)[39]

    EO—Ethylene oxide; PEO—Polyethylene oxide

    图  5  GO/PEO复合聚合物电解质中离子的各向异性传输行为[42]

    Figure  5.  Illustration of anisotropic ion transport in GO/PEO composite electrolyte[42]

    图  6  PAA-PEG/石墨烯、PAA-PEG/GO、PAA-PEG/石墨和PAA-PEG凝胶电解质的EIS曲线[48]

    Figure  6.  EIS curves of gel electrolytes of PAA-PEG/graphene, PAA-PEG/GO, PAA-PEG/graphite and PAA-PEG[48]

    PAA—Polyacrylate; PEG—Poly(ethylene glycol); EIS—Electrochemical impedance spectroscopy

    图  7  利用激光微拉曼光谱仪对ITO电极上桥接氧化还原物质负载的GO(RS/GO)进行电化学表征: (a)含有RS/GO的ITO电极的循环伏安图(CVs);(b)循环伏安扫描期间使用反射光学显微镜成像的电极/电解质与桥接氧化石墨烯固体界面的照片; (c)电极侧电极-电解液界面的棕色(富含GO)区和黑色(富含rGO)区的拉曼光谱; (d)桥接RS/GO或RS/rGO作为扩展氧化还原界面以增强能量传递的示意图[50]

    Figure  7.  Electrochemical characterization accompanied by laser micro-Raman spectroscopy study on bridged redox species-coated GO (RS/GO) on ITO electrode: (a) Cyclic voltammograms (CVs) of ITO electrode with bridged RS/GO; (b) Photographs of electrode/electrolyte solid interface with bridged GO by using reflection optical microscope imaging during cyclic voltammetry scans; (c) Raman spectra of brown (GO-rich) regions and black (rGO-rich) regions on electrode side of electrode-electrolyte interface, respectively; (d) Schematic illustration of bridged RS/GO or RS/rGO performing as extended redox interface for enhancing energy delivery[50]

    ITO—Indium tin oxide; rGO—Reduced-GO; Vd—Decomposition voltage; IG/ID—Intensity ratio

    图  8  PVA/H3PO4/SAGO和PVA/H3PO4凝胶电解质薄膜的拉伸应力-应变曲线[51]

    Figure  8.  Typical tensile stress-strain curves of PVA/H3PO4/SAGO and PVA/H3PO4 gel electrolyte films[51]

    PVA—Poly(vinyl alcohol); SAGO—Small area GO

    图  9  甲醇分子通过剥离/定向GO纳米复合膜的扩散途径[62]

    Figure  9.  Diffusion pathway of methanol molecules through an exfoliated/aligned GO nanocomposite membrane[62]

    GOSULF—Sulfonated organo modified GO; D—Self-diffusion coefficients of water

    图  10  SPEEK-DGO界面上酸碱对之间的质子跳跃行为(左)和在120℃无水条件下的H2/O2单电池性能(右) (a)[63]; 功能化GO的结构,以及在无水条件下含有PGO的PBIs的质子电导率和单一燃料电池性能(b)[64]; SPAES与GO之间和SPAES与ABPBI-GO之间的相互作用示意图(上),在50%湿度下的SPAES/ABPBI-GO和SPAES/GO的质子电导率(下) (c)[65]; SPI和SPI-GOs复合膜的质子传输过程(上)及其质子电导率和直接甲醇燃料电池性能(下) (d)[66]

    Figure  10.  Proton-hopping behavior between acid-base pairs at SPEEK-DGO interface (left) and performance of single cell containing the membrane with anhydrous H2/O2 operating under 120℃ and anhydrous conditions (right) (a)[63]; Structure of functionalized GO, and proton conductivity and single cell performance of PBIs with PGO under anhydrous conditions (b)[64]; Schematic drawing of interaction between SPAES matrix and GO and that between SPAES matrix and ABPBI-GO (upper), and proton conductivity of SPAES/ABPBI-GO and SPAES/GO under 50% RH conditions (bottom) (c)[65]; Proton transport in SPI and SPI-GOs composite membranes (upper), and proton conductivities and DMFCs performance of SPI and SPI-GOs composite membranes (bottom) (d)[66]

    SPEEK—Sulfonated poly(ether ether ketone); DGO—Polydopamine-modified GO; PBI—Polybenzimidazole; Py—2,6-Pyridine; PA—Phosphoric acid; SPAES—Sulfonated poly(arylene ether sulfone); ABPBI—Poly(2,5-benzimidazole); RH—Relative humidity; SPI—Sulfonated polyimide; DMFCs—Direct methanol fuel cells

    图  11  柔性锂离子电池结构示意图(a); 柔性锂离子电池循环100次的放电容量(b)[47]

    Figure  11.  Schematic drawing of flexible thin-film Li-ion battery (a); Discharge capacity during 100 cycles of flexible battery (b) [47]

    图  12  含有氧化石墨烯量子点(GOQDs)的凝胶复合电解质的离子传导机制及其离子电导率和锂离子电池性能[35]

    Figure  12.  Ion transport mechanism and ionic conductivity of gel composite electrolyte containing graphene oxide quantum dots (GOQDs), and performance of corresponding Li-ion battery[35]

    σ—Ionic conductivity; SLE—Celgard-separator-supported liquid electrolyte; GPE—Gel polymer electrolyte; PAVM—Polymer framework comprising poly(acrylonitrile-co-vinyl acetate) and incorporated poly(methyl methacrylate); QD—Quantum dots

  • [1] LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries[J]. Nature Reviews Materials,2019,4(5):312-330. doi: 10.1038/s41578-019-0103-6
    [2] ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects[J]. Chem,2019,5(9):2326-2352. doi: 10.1016/j.chempr.2019.05.009
    [3] LI S, ZHANG S Q, SHEN L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J]. Advance Science,2020,7(5):1903088.
    [4] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature,1998,394:456-458. doi: 10.1038/28818
    [5] ZHANG X, XIE J, SHI F, et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano Letters,2018,18(6):3829-3838.
    [6] ZHU Y, CAO J, CHEN H, et al. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries[J]. Journal of Material Chemistry A,2019,7(12):6832-6839. doi: 10.1039/C9TA00560A
    [7] HUANG Y F, WU P F, ZHANG M Q, et al. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance[J]. Electrochimica Acta,2014,132:103-111. doi: 10.1016/j.electacta.2014.03.151
    [8] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6:183-191. doi: 10.1038/nmat1849
    [9] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature,2006,442:282-286. doi: 10.1038/nature04969
    [10] KARIM M R, HATAKEYAMA K, MATSUI T, et al. Graphene oxide nanosheet with high proton conductivity[J]. Journal of the American Chemical Society,2013,135(22):8097-8100. doi: 10.1021/ja401060q
    [11] HE H, KLINOWSKI J, FORSTER M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters,1998,287(1-2):53-56. doi: 10.1016/S0009-2614(98)00144-4
    [12] ROJAEE R, SHAHBAZIAN-YASSAR R. Two dimensional materials to address the lithium battery challenges[J]. ACS Nano,2020,14(3):2628-2658. doi: 10.1021/acsnano.9b08396
    [13] FAROOQUI U R, AHMAND A L, HAMID N A. Graphene oxide: A promising membrane material for fuel cells[J]. Renewable and Sustainable Energy Reviews,2018,82:714-733. doi: 10.1016/j.rser.2017.09.081
    [14] YE Y S, TSENG C Y, SHEN W C, et al. A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes[J]. Journal of Materials Chemistry,2011,21(28):10448-10453. doi: 10.1039/c1jm11152c
    [15] CHOI B G, HONG J, PARK Y C, et al. Innovative polymer nanocomposite electrolytes: Nanoscale manipulation of ion channels by functionalized graphenes[J]. ACS Nano,2011,5(6):5167-5174.
    [16] LIU L, TONG C, HE Y, et al. Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell[J]. Journal of Membrane Science,2015,487:99-108. doi: 10.1016/j.memsci.2015.03.077
    [17] KULKARNI D D, CHOI I, SINGAMANENI S, et al. Graphene oxide-polyelectrolyte nanomembranes[J]. ACS Nano,2010,4(8):4667-4676. doi: 10.1021/nn101204d
    [18] WANG L S, LAI A N, LIN C X, et al. Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells[J]. Journal of Membrane Science,2015,492:58-66. doi: 10.1016/j.memsci.2015.05.049
    [19] WU F, LI J, SU Y, et al. Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon[J]. Nano Letters,2016,16(9):5488-5494. doi: 10.1021/acs.nanolett.6b01981
    [20] XUE B X, YAO J, ZHOU S Y, et al. Enhancement of proton/methanol selectivity via the in-situ cross-linking of sulfonated poly(p-phenylene-co-aryl ether ketone) and graphene oxide (GO) nanosheets[J]. Journal of Membrane Science,2020,605:118102. doi: 10.1016/j.memsci.2020.118102
    [21] LI J, XU G X, CAI W W, et al. Non-destructive modification on Nafion membrane via in-situ inserting of sheared graphene oxide for direct methanol fuel cell applications[J]. Electrochimica Acta,2018,282:362-368. doi: 10.1016/j.electacta.2018.06.072
    [22] LIU J Q, WU X F, HE J Y, et al. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery[J]. Electrochimica Acta,2017,235:500-507. doi: 10.1016/j.electacta.2017.02.042
    [23] BANITABA S N, SEMMANI D, HEYDARI-SOURESHJANI E, et al. Nanofibrous poly(ethylene oxide)-based structures incorporated with multi-walled carbon nanotube and graphene oxide as all-solid-state electrolytes for lithium ion batteries[J]. Polymer International,2019,68(10):1787-1794. doi: 10.1002/pi.5889
    [24] ZHANG S, LI D, KANG J, et al. Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells[J]. Journal of Applied Polymer Science,2018,135(27-28):46443. doi: 10.1002/app.46443
    [25] YANG F J, HUANG Y F, ZHANG M Q, et al. Significant improvement of ionic conductivity of high-graphene oxide loading ice-templated poly(ionic liquid) nanocomposite electrolytes[J]. Polymer,2018,153:438-444. doi: 10.1016/j.polymer.2018.08.039
    [26] QIAN X M, GU N Y, CHENG Z L, et al. Methods to study the ionic conductivity of polymeric electrolytes using a.c. impedance spectroscopy[J]. Journal of Solid State Electrochemistry,2001,6(1):8-15. doi: 10.1007/s100080000190
    [27] RATHOD S G, BHAJANTRI R F, RAVINDRACHARY V, et al. Temperature-dependent ionic conductivity and transport properties of LiClO4-doped PVA modified cellulose composites[J]. Bulletin of Materials Science,2015,38(5):1213-1221. doi: 10.1007/s12034-015-1002-0
    [28] OTHMAN L, CHEW K W, OSMAN Z. Impedance spectroscopy studies of poly(methyl methacrylate)-lithium salts polymer electrolyte systems[J]. Ionics,2007,13(5):337-342. doi: 10.1007/s11581-007-0120-0
    [29] CARVALHO L M, GUE´GAN P, CHERADAME H, et al. Variation of the mesh size of PEO-based networks filled with TFSILi: From an Arrhenius to WLF type conductivity behavior[J]. European Polymer Journal,2000,36(2):401-409. doi: 10.1016/S0014-3057(99)00057-9
    [30] ADAM G, GIBBS J H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids[J]. The Journal of Chemical Physics,1965,43(1):139-146. doi: 10.1063/1.1696442
    [31] AZIZ S B, WOO T J, KADIR M F Z, et al. A conceptual review on polymer electrolytes and ion transport models[J]. Journal of Science: Advanced Materials and Devices,2018,3(1):1-17. doi: 10.1016/j.jsamd.2018.01.002
    [32] DIEDERICHSEN K M, BUSS H G, MCCLOSKEY B D. The compensation effect in the Vogel-Tammann-Fulcher (VTF) equation for polymer-based electrolytes[J]. Macromolecules,2017,50(10):3831-3840. doi: 10.1021/acs.macromol.7b00423
    [33] MA L, FU C Y, LI L J, et al. Nanoporous polymer films with a high cation transference number stabilize lithium metal anodes in light-weight batteries for electrified transportation[J]. Nano Letters,2019,19(2):1387-1394. doi: 10.1021/acs.nanolett.8b05101
    [34] DIEDERICHSEN K M, MCSHANE E J, MCCLOSKEY B D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries[J]. ACS Energy Letters,2017,2(11):2563-2575. doi: 10.1021/acsenergylett.7b00792
    [35] CHEN Y M, HSU S T, TSENG Y H, et al. Minimization of ion-solvent clusters in gel electrolytes containing graphene oxide quantum dots for lithium-ion batteries[J]. Small,2018,14(12):1703571. doi: 10.1002/smll.201703571
    [36] NICOTERA I, SIMARI C, AGOSTINI M, et al. A novel Li+-Nafion-sulfonated graphene oxide membrane as single lithium-ion conducting polymer electrolyte for lithium batteries[J]. Journal of Physical Chemistry C,2019,123(45):27406-27416. doi: 10.1021/acs.jpcc.9b08826
    [37] LI Q, WOOD E, ARDEBILI H. Elucidating the mechanisms of ion conductivity enhancement in polymer nanocomposite electrolytes for lithium ion batteries[J]. Applied Physics Letters,2013,102(24):243903. doi: 10.1063/1.4809837
    [38] YUAN M, ERDMAN J, TANG C, et al. High performance solid polymer electrolyte with graphene oxide nanosheets[J]. RSC Advances,2014,4(103):59637-59642. doi: 10.1039/C4RA07919A
    [39] GAO S, ZHONG J, XUE G B, et al. Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide[J]. Journal of Membrane Science,2014,470:316-322. doi: 10.1016/j.memsci.2014.07.044
    [40] CHENG S, SMITH D M, LI D M. Anisotropic ion transport in a poly(ethylene oxide)-LiClO4 solid state electrolyte templated by graphene oxide[J]. Macromolecules,2015,48(13):4503-4510. doi: 10.1021/acs.macromol.5b00972
    [41] JAGDEEP M, DEEPAK K P, SATYABRATA S. Li-ion conductivity in PEO-graphene oxide nanocomposite polymer electrolytes: A study on effect of the counter anion[J]. Journal of Applied Polymer Science,2018,135(22):46336. doi: 10.1002/app.46336
    [42] ZHANG Z, DING J J, OCKO B M, et al. Nanoconfinement and salt synergistically suppress crystallization in polyethylene oxide[J]. Macromolecules,2020,53(4):1494-1501. doi: 10.1021/acs.macromol.9b01725
    [43] ZHAO L, LI Y, ZHANG H, et al. Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide[J]. Journal of Power Sources,2015,286:445-457. doi: 10.1016/j.jpowsour.2015.04.005
    [44] VENKATESAN S, DARLIM E S, TSAI M H, et al. Graphene oxide sponge as nanofillers in printable electrolytes in high-performance quasi-solid-state dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces,2018,10(13):10955-10964.
    [45] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical reviews,2017,117(15):10403-10473.
    [46] FOROOZAN T, SOTO F A, YURKIV V, et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li[J]. Advanced Functional Materials,2018,28(15):1705917. doi: 10.1002/adfm.201705917
    [47] KAMMOUN M, BERG S, ARDEBILI H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte[J]. Nanoscale,2015,7(41):17516-17522. doi: 10.1039/C5NR04339E
    [48] YUAN S, TANG Q, HU B, et al. Efficient quasi-solid-state dye-sensitized solar cells from graphene incorporated conducting gel electrolytes[J]. Journal of Materials Chemistry A,2014,2(8):2814-2821. doi: 10.1039/c3ta14385f
    [49] CHEN Y T, ABBAS S A, KAISAR N, et al. Mitigating metal dendrite formation in lithium-sulfur batteries via morphology-tunable graphene oxide interfaces[J]. ACS Applied Materials & Interfaces,2019,11(2):2060-2070.
    [50] HUANG Y F, RUAN W H, LIN D L, et al. Bridging redox species-coated graphene oxide sheets to electrode for extending battery life using nanocomposite electrolyte[J]. ACS Applied Materials & Interfaces,2017,9(1):909-918.
    [51] ALIPOORI S, TORKZADEH M M, MOGHADAM M H M, et al. Graphene oxide: An effective ionic conductivity promoter for phosphoric acid-doped poly(vinyl alcohol) gel electrolytes[J]. Polymer,2019,184:121908. doi: 10.1016/j.polymer.2019.121908
    [52] CAO Y C, XU C, WU X, et al. A poly(ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells[J]. Journal of Power Sources,2011,196(20):8377-8382. doi: 10.1016/j.jpowsour.2011.06.074
    [53] KODURU HK, SCARPELLI F, MARINOV YG, et al. Characterization of PEO/PVP/GO nanocomposite solid polymer electrolyte membranes: Microstructural, thermo-mechanical, and conductivity properties[J]. Ionics,2018,24(11):3459-3473. doi: 10.1007/s11581-018-2484-8
    [54] MISHRA A K, KIM N H, JUNG D, et al. Enhanced mechanical properties and proton conductivity of Nafion-SPEEK-GO composite membranes for fuel cell applications[J]. Journal of Membrane Science,2014,458:128-135. doi: 10.1016/j.memsci.2014.01.073
    [55] AHMAD A L, FAROOQUI U R, HAMID N A. Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane[J]. Electrochimica Acta,2018,283:842-849. doi: 10.1016/j.electacta.2018.07.001
    [56] STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature,2001,414:345-352. doi: 10.1038/35104620
    [57] RAO J, WANG X, YUNIS R, et al. A novel proton conducting iongel electrolyte based on poly(ionic liquids) and protic ionic liquid[J]. Electrochimica Acta,2020,346:136224. doi: 10.1016/j.electacta.2020.136224
    [58] WANG C, MO B, HE Z, et al. Crosslinked norbornene copolymer anion exchange membrane for fuel cells[J]. Journal of Membrane Science,2018,556:118-25. doi: 10.1016/j.memsci.2018.03.080
    [59] OLSSON J S, PHAM T H, JANNASCH P. Poly(arylene piperidinium) hydroxide ion exchange membranes: Synthesis, alkaline stability, and conductivity[J]. Advanced Functional Materials,2018,28(2):1702758. doi: 10.1002/adfm.201702758
    [60] CHOI B G, HUH Y S, PARK Y C, et al. Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets[J]. Carbon,2012,50(15):5395-5402. doi: 10.1016/j.carbon.2012.07.025
    [61] PENG K J, LAI J Y, LIU Y L. Nanohybrids of graphene oxide chemically-bonded with Nafion: Preparation and application for proton exchange membrane fuel cells[J]. Journal of Membrane Science,2016,514:86-94. doi: 10.1016/j.memsci.2016.04.062
    [62] NICOTERA I, SIMARI C, COPPOLA L, et al. Sulfonated graphene oxide platelets in Nafion nanocomposite membrane: Advantages for application in direct methanol fuel cells[J]. The Journal of Physical Chemistry C,2014,118(42):24357-24368.
    [63] HE Y, WANG J, ZHANG H, et al. Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions[J]. Journal of Materials Chemistry A,2014,2(25):9548-9558. doi: 10.1039/c3ta15301k
    [64] ABOUZARI-LOTF E, ZAKERI M, NASEF M M, et al. Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources,2019,412:238-245. doi: 10.1016/j.jpowsour.2018.11.057
    [65] KO T, KIM K, LIM M Y, et al. Sulfonated poly(arylene ether sulfone) composite membranes having poly(2, 5-benzimidazole)-grafted graphene oxide for fuel cell applications[J]. Journal of Materials Chemistry A,2015,3(41):20595-20606. doi: 10.1039/C5TA04849D
    [66] HE Y, TONG C Y, GENG L, et al. Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: Size effect of graphene oxide[J]. Journal of Membrane Science,2014,458:36-46. doi: 10.1016/j.memsci.2014.01.017
    [67] MOHAMMED O F, PINES D, NIBBERINGAND E T J, et al. Base-induced solvent switches in acid-base reactions[J]. Angewandte Chemie International Edition,2007,46(9):1458-1461. doi: 10.1002/anie.200603383
    [68] HAN J, KIM K, KIM S, et al. Cross-linked sulfonated poly(ether ether ketone) membranes formed by poly(2,5-benzimidazole)-grafted graphene oxide as a novel cross-linker for direct methanol fuel cell applications[J]. Journal of Power Sources,2020,448:227427. doi: 10.1016/j.jpowsour.2019.227427
    [69] LEE H, HAN J, KIM K, et al. Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells[J]. Journal of Industrial and Engineering Chemistry,2019,74:223-232. doi: 10.1016/j.jiec.2019.03.012
    [70] HEO Y, IM H, KIM J. The effect of sulfonated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells[J]. Journal of Membrane Science,2013,425-426:11-22.
    [71] XU C, CAO Y, KUMAR R, et al. A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Materials Chemistry,2011,21(30):11359-11364. doi: 10.1039/c1jm11159k
    [72] LIU Y, WANG J, ZHANG H, et al. Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions[J]. Journal of Power Sources,2014,269:898-911. doi: 10.1016/j.jpowsour.2014.07.075
    [73] MITRA M, KULSI C, CHATTERJEE K, et al. Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications[J]. RSC Advances,2015,5(39):31039-31048. doi: 10.1039/C5RA01794G
    [74] LIU S, WEI M, ZHENG X, et al. Highly sensitive and selective sensing platform based on π-π interaction between tricyclic aromatic hydrocarbons with thionine-graphene composite[J]. Analytica Chimica Acta,2014,826:21-27. doi: 10.1016/j.aca.2014.04.010
    [75] LIAQAT K, REHAMAN W, SAEED S, et al. Synthesis and characterization of novel sulfonated polyimide with varying chemical structure for fuel cell applications[J]. Solid State Ionics,2018,319:141-147. doi: 10.1016/j.ssi.2018.02.018
    [76] YUAN Q, LIU P, BAKER G L. Sulfonated polyimide and PVDF based blend proton exchange membranes for fuel cell applications[J]. Journal of Materials Chemistry A,2015,3(7):3847-3853. doi: 10.1039/C4TA04910A
    [77] CHEN B K, WU TY, WONG J M, et al. Highly sulfonated diamine synthesized polyimides and protic ionic liquid composite membranes improve PEM conductivity[J]. Polymers,2015,7(6):1046-1065. doi: 10.3390/polym7061046
    [78] KOWSARI E, ZARE A, ANSARI V. Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane[J]. International Journal of Hydrogen Energy,2015,40(40):13964-13978. doi: 10.1016/j.ijhydene.2015.08.064
    [79] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society,2013,135(4):1167-1176.
    [80] ZHAO Q, LIU X T, STALIN S J, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy,2019,4:365-373. doi: 10.1038/s41560-019-0349-7
    [81] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials,2018,30:1800561. doi: 10.1002/adma.201800561
    [82] LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy,2017,2:17119.
    [83] DENG W, LIANG S, ZHOU X, et al. Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode[J]. Journal of Materials Chemistry A,2019,7(11):6267-6274. doi: 10.1039/C9TA00143C
    [84] ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials,2019,31:1902029. doi: 10.1002/adma.201902029
    [85] CHEN N, XING Y, WANG L, et al. “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery[J]. Nano Energy,2018,47:35-42. doi: 10.1016/j.nanoen.2018.02.036
    [86] WANG S H, KUO P L, HSIEH C T, et al. Design of poly(acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries[J]. ACS Applied Materials & Interfaces,2014,6(21):19360-19370.
    [87] WANG X, GIRARD G M A, ZHU H, et al. Poly(ionic liquid)s/electrospun nanofiber composite polymer electrolytes for high energy density and safe Li metal batteries[J]. ACS Applied Energy Materials,2019,2(9):6237-6245. doi: 10.1021/acsaem.9b00765
    [88] CHEN G H, ZHANG F, ZHOU Z M, et al. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability[J]. Advanced Energy Materials,2018,8(25):1801219. doi: 10.1002/aenm.201801219
    [89] YANG T S, SHU C Z, HOU Z Q, et al. 3D porous network gel polymer electrolyte with high transference number for dendrite-free Li-O2 batteries[J]. Solid State Ionics,2019,343:115088. doi: 10.1016/j.ssi.2019.115088
    [90] RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013
    [91] YANG X, ZHANG F, ZHANG L, et al. A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications[J]. Advanced Functional Materials,2013,23(26):3353-3360. doi: 10.1002/adfm.201203556
    [92] YANG X, ZHANG L, ZHANG F, et al. A high-performance all-solid-state supercapacitor with graphene-doped carbon material electrodes and a graphene oxide-doped ion gel electrolyte[J]. Carbon,2014,72:381-386. doi: 10.1016/j.carbon.2014.02.029
    [93] PENG H, LV Y, WEI G, et al. A flexible and self-healing hydrogel electrolyte for smart supercapacitor[J]. Journal of Power Sources,2019,431:210-219. doi: 10.1016/j.jpowsour.2019.05.058
    [94] LIN B, FENG T, CHU F, et al. Poly(ionic liquid)/ionic liquid/graphene oxide composite quasi solid-state electrolytes for dye sensitized solar cells[J]. RSC Advances,2015,5(70):57216-57222. doi: 10.1039/C5RA10702D
    [95] AZIZ M A, OH K, SHANMUGAM S. A sulfonated poly(arylene ether ketone)/polyoxometalate-graphene oxide composite: A highly ion selective membrane for all vanadium redox flow batteries[J]. Chemical Communications,2017,53(5):917-20. doi: 10.1039/C6CC08855D
    [96] ZHANG Y, WANG H, LIU B, et al. An ultra-high ion selective hybrid proton exchange membrane incorporated with zwitterion-decorated graphene oxide for vanadium redox flow batteries[J]. Journal of Materials Chemistry A,2019,7(20):12669-12680. doi: 10.1039/C9TA01891C
    [97] LIU B, JIANG Y, WANG H, et al. Sulfonated poly(ether ether ketone) hybrid membranes with amphoteric graphene oxide nanosheets as interfacial reinforcement for vanadium redox flow battery[J]. Energy & Fuels,2020,34(2):2452-2461.
    [98] YU H W, KIM H K, KIM T, et al. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly(sodium 4-styrenesulfonate)[J]. ACS Applied Materials & Interfaces,2014,6(11):8320-8326.
    [99] PAEK K, YANG H, LEE J, et al. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide[J]. ACS Nano,2014,8(3):2848-2856. doi: 10.1021/nn406657b
  • 加载中
图(12)
计量
  • 文章访问数:  1571
  • HTML全文浏览量:  784
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 录用日期:  2020-11-17
  • 网络出版日期:  2020-11-26
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回