留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷掺杂石墨相氮化碳的制备及其在锂硫电池中的应用

张旭 杨绍斌

张旭, 杨绍斌. 磷掺杂石墨相氮化碳的制备及其在锂硫电池中的应用[J]. 复合材料学报, 2021, 38(5): 1558-1566. doi: 10.13801/j.cnki.fhclxb.20201111.005
引用本文: 张旭, 杨绍斌. 磷掺杂石墨相氮化碳的制备及其在锂硫电池中的应用[J]. 复合材料学报, 2021, 38(5): 1558-1566. doi: 10.13801/j.cnki.fhclxb.20201111.005
ZHANG Xu, YANG Shaobin. Preparation of phosphorus-doped graphitic carbon nitride and its application in lithium-sulfur batteries[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1558-1566. doi: 10.13801/j.cnki.fhclxb.20201111.005
Citation: ZHANG Xu, YANG Shaobin. Preparation of phosphorus-doped graphitic carbon nitride and its application in lithium-sulfur batteries[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1558-1566. doi: 10.13801/j.cnki.fhclxb.20201111.005

磷掺杂石墨相氮化碳的制备及其在锂硫电池中的应用

doi: 10.13801/j.cnki.fhclxb.20201111.005
基金项目: 国家自然科学基金(51274119;51774175)
详细信息
    通讯作者:

    杨绍斌,博士,教授,博士生导师,研究方向为新能源储能材料 E-mail:lgdysb@163.com

  • 中图分类号: TM911

Preparation of phosphorus-doped graphitic carbon nitride and its application in lithium-sulfur batteries

  • 摘要: 通过热缩聚合成法,采用尿素为原料,制备石墨相氮化碳(g-C3N4),以磷酸氢二胺作为磷源,制备不同磷含量的磷掺杂g-C3N4 (xP-CN),研究磷掺杂对xP-CN的微观结构、形貌及xP-CN/S复合材料作为锂硫电池正极材料电化学性能的影响。研究表明,磷掺杂后xP-CN的层间距增大,导电性提高,比表面积变大,10% P-CN的比表面积最大达到101.741 m2·g−1。10% P-CN/S复合材料在0.05 C (1 C=1675 mA·h·g−1)下首次放电比容量达到1383.8 mA·h·g−1,在0.2 C下循环100次后可逆比容量为860.0 mA·h·g−1,而g-C3N4/S复合材料比容量仅为178.3 mA·h·g−1;10% P-CN/S复合材料经过倍率测试后比容量可以回复到0.2 C时的93.6%,表现出良好的循环性能和倍率性能。

     

  • 图  1  石墨相氮化碳(g-C3N4)和不同磷含量的磷掺杂g-C3N4 (xP-CN)的XRD图谱

    Figure  1.  XRD patterns of graphite-phase carbon nitride (g-C3N4) and phosphorus-doped g-C3N4 with different phosphorus content (xP-CN)

    图  2  S、g-C3N4/S和xP-CN/S复合材料的XRD图谱

    Figure  2.  XRD patterns of S, g-C3N4/S and xP-CN/S composites

    图  3  g-C3N4xP-CN的FTIR图谱

    Figure  3.  FTIR spectra of g-C3N4 and xP-CN

    图  4  g-C3N4的的XPS图谱: (a)全谱; (b) C1s; (c) N1s; 10%P-CN的的XPS图谱: (d)全谱; (e) C1s; (f) N1s; (g) P2p

    Figure  4.  XPS spectra of g-C3N4: (a) Total; (b) C1s; (c) N1s; XPS spectra of 10% P-CN: (d) Total; (e) C1s; (f) N1s; (g) P2p

    图  5  g-C3N4 (a)、2% P-CN (b)、10%P-CN (c)、20% P-CN (d)及g-C3N4/S (e)、10% P-CN/S (f)复合材料的SEM图像

    Figure  5.  SEM images of g-C3N4 (a), 2% P-CN (b), 10%P-CN (c), 20% P-CN (d) and g-C3N4/S (e), 10% P-CN/S (f) composites

    图  6  g-C3N4 (a)和10% P-CN (b)的TEM图像

    Figure  6.  TEM images of g-C3N4 (a) and 10% P-CN (b)

    图  7  g-C3N4/S ((a)~(d))和10% P-CN/S ((e)~(i))复合材料元素的EDS面扫图

    Figure  7.  Elemental EDS maps of g-C3N4/S ((a)-(d)) and 10% P-CN/S ((e)-(i)) composites

    图  8  g-C3N4/S和xP-CN/S复合材料的电化学性能:(a)首次充放电曲线; (b)倍率性能曲线; (c)循环性能曲线

    Figure  8.  Electrochemical performance of g-C3N4/S and xP-CN/S composites: (a) Initial charge and discharge curve; (b) Rate performance curve; (c) Cycling performances curve

    图  9  g-C3N4xP-CN对多硫化物的吸附实验

    Figure  9.  Experiment of polysulfide adsorption by g-C3N4 and xP-CN

    图  10  g-C3N4/S和10% P-CN/S复合材料的循环伏安曲线和电化学阻抗曲线

    Figure  10.  Cyclic voltammetry and electrochemical impedance spectroscopy curves of g-C3N4/S and 10% P-CN/S composites

    表  1  g-C3N4xP-CN中P元素含量

    Table  1.   Element contents of P in g-C3N4 and xP-CN

    Line TypeP/wt%
    g-C3N4 K 0
    2% P-CN K 1.63
    10% P-CN K 8.07
    20% P-CN K 19.02
    下载: 导出CSV
  • [1] PANG Q. Advanced electrodes and electrolytes for long-lived and high-energy-density lithium-sulfur batteries[D]. Waterloo: The University of Waterloo, 2017.
    [2] YANG X, YU Y, YAN N, et al. 1D oriented cross-linking hierarchical porous carbon fibers as a sulfur immobilizer for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2016,4(16):5965-5972. doi: 10.1039/C6TA01060A
    [3] LI L, JACOBS R, GAO P, et al. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes[J]. Journal of the American Chemical Society,2016,138(8):2838-2848. doi: 10.1021/jacs.6b00061
    [4] DUNN B, KAMATH H, TARASCON JM. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334(6058):928-935. doi: 10.1126/science.1212741
    [5] NATARAJAN A, STEPHAN A M, CHAN C H, et al. Electrochemical studies on composite gel polymer electrolytes for lithium sulfur-batteries[J]. Journalof Applied Polymer Science,2017,134(11):44594-44602.
    [6] LI H, MA S, CAI H, et al. Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries[J]. Energy Storage Materials,2019,18:338-348.
    [7] LIU J D, CHEN H, CHEN W D, et al. New insight into the “shuttle mechanism” of rechargeable lithium-sulfur batteries[J]. ChemElectroChem,2019,6(10):2782-2787. doi: 10.1002/celc.201900420
    [8] 官亦标, 李万隆, 谢潇怡, 等. TiO2/CNTs复合材料涂覆隔膜的制备及在锂硫电池中的应用[J]. 高等学校化学学报, 2019, 40(3):536-541.

    GUAN Yibiao, LI Wanlong, XIE Xiaoyi, et al. Preparation of TiO2/CNTs composite coated separator and its application in Li-S battery[J]. Chemical Journal of Chinese Universities,2019,40(3):536-541(in Chinese).
    [9] YUAN Y, TAN G, WEN J, et al. Encapsulating various sulfur allotropes within graphene nanocages for long-lasting lithium storage[J]. Advanced Functional Materials,2018,28(38):1706443.
    [10] ZHOU Y, ZHOU C, LI Q, et al. Enabling prominent high-rate and cycle performances in one lithium-sulfur battery: Designing permselective gateways for Li+ transportation in holey-CNT/S cathodes[J]. Advanced Materials,2015,27(25):3774-3781. doi: 10.1002/adma.201501082
    [11] YU Q, LU Y, LUO R, et al. In situ formation of copper-based hosts embedded within 3D N-doped hierarchically porous carbon networks for ultralong cycle lithium-sulfur batteries[J]. Advanced Functional Materials,2018,28(39):1804520. doi: 10.1002/adfm.201804520
    [12] SONG J, YU Z, GORDIN M L, et al. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries[J]. Nano Letters,2016,16(2):864-870. doi: 10.1021/acs.nanolett.5b03217
    [13] SU D, CORTIE M, WANG G. Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries[J]. Advanced Energy Materials,2017,7(8):1602014-1602026. doi: 10.1002/aenm.201602014
    [14] PANG Q, NAZAR L F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano,2016,10(4):4111-4118. doi: 10.1021/acsnano.5b07347
    [15] MENG Z, XIE Y, CAI T, et al. Graphene-like g-C3N4 nanosheets/sulfur as cathode for lithium-sulfur battery[J]. Electrochimica Acta,2016,210:829-836. doi: 10.1016/j.electacta.2016.06.032
    [16] 游然, 陈露, 张永平. 原子掺杂改善石墨相氮化碳光催化性能的研究进展[J]. 物理化学进展, 2017, 6(2):84-96. doi: 10.12677/JAPC.2017.62011

    YOU Ran, CHEN Lu, ZHANG Yongping. Research progress on improving the photocatalysis of graphite-C3N4via O, S and P doping[J]. Journal of Advances in Physical Chemistry,2017,6(2):84-96(in Chinese). doi: 10.12677/JAPC.2017.62011
    [17] 石磊. 氮化碳基光催化材料的制备及性能[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    SHI Lei. Synthesis and property of carbon nitride basedphotocatalytic materials[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [18] ZHANG Y, MORI T, YE J, et al. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation[J]. Journal of the American Chemical Society,2010,132(18):6294-6295. doi: 10.1021/ja101749y
    [19] GUO S, DENG Z, LI M, et al. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2016,55(5):1830-1834. doi: 10.1002/anie.201508505
    [20] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2008,8:76-80.
    [21] DUAN J, CHEN S, JARONIEC M, et al. Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution[J]. ACS Nano,2015,9(1):931-940. doi: 10.1021/nn506701x
    [22] RONG X, QIU F, RONG J, et al. Synthesis of porous g-C3N4/La and enhanced photocatalytic activity for the degradation of phenol under visible light irradiation[J]. Journal of Solid State Chemistry,2015,230:126-134. doi: 10.1016/j.jssc.2015.07.003
    [23] GOETTMANN F, FISCHER A, ANTONIETTI M, et al. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene[J]. Angewandte Chemie International Edition,2006,45(27):4467-4471. doi: 10.1002/anie.200600412
    [24] 徐赞, 于薛刚, 单妍, 等. 一步法合成磷掺杂石墨相氮化碳及其光催化性能[J]. 无机材料学报, 2017, 32(2):155-162. doi: 10.15541/jim20160256

    XU Zan, YU Xuegang, SHAN Yan, et al. One-pot synthesis of phosphorus doped g-C3N4 with enhanced visible-light photocatalytic activity[J]. Journal of Inorganic Materials,2017,32(2):155-162(in Chinese). doi: 10.15541/jim20160256
    [25] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir,2009,25(17):10397-10401.
    [26] ZHANG L, CHEN X, GUAN J, et al. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity[J]. Materials Research Bulletin,2013,48(9):3485-3491. doi: 10.1016/j.materresbull.2013.05.040
    [27] HU S, MA L, YOU J, et al. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts Co-doped with iron and phosphorus[J]. Applied Surface Science,2014,311:164-171. doi: 10.1016/j.apsusc.2014.05.036
    [28] HU S, MA L, XIE Y, et al. Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions[J]. Dalton Transactions,2015,44(48):20889-20897. doi: 10.1039/C5DT04035C
    [29] DAKE L S, BAER D R, FRIEDRICH D M. Auger parameter measurements of phosphorus compounds for characterization of phosphazenes[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1989,7(3):1634-1638.
    [30] MA X, LV Y, XU J, et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: A first-principles study[J]. The Journal of Physical Chemistry C,2012,116(44):23485-23493. doi: 10.1021/jp308334x
    [31] 刘树和, 刘彬, 赵焱, 等. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8):8014-8019.

    LIU Shuhe, LIU Bin, ZHAO Yan, et al. Activated carbon from cattail used for the cathode material of lithium-sulfur batteries[J]. Materials Reports,2020,34(8):8014-8019(in Chinese).
    [32] PARK J, YU S H, SUNG Y E. Design of structural and functional nanomaterials for lithium-sulfur batteries[J]. Nano Today,2018,18:35-64. doi: 10.1016/j.nantod.2017.12.010
    [33] HOU Y, LI J, WEN Z, et al. N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries[J]. Nano Energy,2014,8:157-164. doi: 10.1016/j.nanoen.2014.06.003
    [34] 杨绍斌, 郭鑫瑶, 董伟, 等. 盐酸活化对石墨相氮化碳(g-C3N4)结构和g-C3N4/S锂硫电池正极复合材料性能的影响[J]. 复合材料学报, 2019, 36(1):254-260.

    YANG Shaobin, GUO Xinyao, DONG Wei, et al. Effect of hydrochloric acid activation on properties of graphite carbon nitride (g-C3N4) structure and g-C3N4/S cathode composites for lithium-sulfur batteries[J]. Acta Materiae Compositae Sinica,2019,36(1):254-260(in Chinese).
    [35] MA T Y, RAN J, DAI S, et al. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes[J]. Angewandte Chemie International Edition,2015,54(15):4646-4650. doi: 10.1002/anie.201411125
    [36] ZHOU Y, ZHANG L, LIU J, et al. Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light[J]. Journal of Materials Chemistry A,2015,3(7):3862-3867. doi: 10.1039/C4TA05292G
    [37] ZHANG X, YANG S, CHEN Y, et al. Effect of phosphorous-doped graphitic carbon nitride on electrochemical properties of lithium-sulfur battery[J]. Ionics,2020,26(4):5491-5501. doi: 10.1007/s11581-020-03728-w
    [38] ZHENG G, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters,2011,11(10):4462-4467. doi: 10.1021/nl2027684
    [39] LI L, CHEN L, MUKHERJEE S, et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries[J]. Advanced Materials,2017,29(2):1602734. doi: 10.1002/adma.201602734
    [40] ZUO P, HUA J, HE M, et al. Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2017,5(22):10936-10945. doi: 10.1039/C7TA02245J
    [41] 杨绍斌, 夏英凯, 刘凤霞, 等. 活化剂对焦煤基多孔碳制备的影响及在锂硫电池中的应用[J]. 复合材料学报, 2020, 37(3):716-723.

    YANG Shaobin, XIA Yingkai, LIU Fengxia, et al. Effect of activator on preparation of coal-based porous carbon and its application in lithium-sulfur battery[J]. Acta Materiae Compositae Sinica,2020,37(3):716-723(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2122
  • HTML全文浏览量:  533
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 录用日期:  2020-10-28
  • 网络出版日期:  2020-11-11
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回