留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点/TiO2复合光催化材料的研究进展

卫思颖 马建中 范倩倩

卫思颖, 马建中, 范倩倩. 量子点/TiO2复合光催化材料的研究进展[J]. 复合材料学报, 2021, 38(3): 712-721. doi: 10.13801/j.cnki.fhclxb.20201106.003
引用本文: 卫思颖, 马建中, 范倩倩. 量子点/TiO2复合光催化材料的研究进展[J]. 复合材料学报, 2021, 38(3): 712-721. doi: 10.13801/j.cnki.fhclxb.20201106.003
WEI Siying, MA Jianzhong, FAN Qianqian. Research advances on quantum dots/TiO2 composite photocatalytic materials[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 712-721. doi: 10.13801/j.cnki.fhclxb.20201106.003
Citation: WEI Siying, MA Jianzhong, FAN Qianqian. Research advances on quantum dots/TiO2 composite photocatalytic materials[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 712-721. doi: 10.13801/j.cnki.fhclxb.20201106.003

量子点/TiO2复合光催化材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20201106.003
基金项目: 国家重点研发计划(2017YFB0308602)
详细信息
    通讯作者:

    马建中,教授,博士生导师,研究方向为有机/无机纳米复合材料的关键技术  E-mail:majz@sust.edu.cn

    范倩倩,副教授,硕士生导师,研究方向为钙钛矿量子点微胶囊功能涂层材料  E-mail:fqleather@163.com

  • 中图分类号: TB333

Research advances on quantum dots/TiO2 composite photocatalytic materials

  • 摘要: 近年,光催化技术已被广泛应用于污水处理、CO2还原、制氢等多个领域。在光催化材料中,TiO2由于具有化学稳定性高、来源广泛、价格低廉等优点,应用最广泛。但较宽的带隙及较高的电子及空穴复合效率使TiO2的光催化性能受到极大限制。量子点(QDs)作为一种受量子约束效应影响的纳米尺度粒子,具有载流子易调控和表面位点丰富等优势。因此,研究人员采用不同方法将TiO2与QDs复合,以增强TiO2的光催化性能,获得了系列具有优异光催化性能的QDs/TiO2复合光催化材料。本文主要综述了QDs/TiO2复合光催化材料的研究进展。首先,阐述了QDs/TiO2复合光催化材料的制备方法,并就QDs对TiO2光催化性能的增强机制进行了剖析;然后,总结了QDs/TiO2复合光催化材料在有机污染物降解、制氢及CO2还原方面的应用研究进展;最后,围绕QDs/TiO2复合光催化材料现阶段研究中的关键问题及未来的研究前景进行了展望。

     

  • 图  1  物理共混法制备CDs-N-TiO2复合光催化材料过程示意图[26]

    Figure  1.  Schematic illustration of synthesis of CDs-N-TiO2 composite photocatalytic materials via physical blending method[26]

    CDs—Carbon quantum dots

    图  2  水热法制备GQDs/TiO2复合光催化材料的过程示意图[19]

    Figure  2.  Schematic illustration of synthesis of GQDs/TiO2 composite photocatalytic materials via hydrothermal method[19]

    GQDs—Graphene quantum dots

    图  3  离子层沉积法制备CdS QDs/TiO2复合光催化材料过程示意图[33]

    Figure  3.  Schematic illustration of synthesis of CdS QDs/TiO2 composite photocatalytic materials via ionic layer adsorption and reaction method[33]

    QDs—Quantum dots

    图  4  CdS QDs/TiO2复合材料的光催化机制示意图[39]

    Figure  4.  Schematic diagram of photocatalytic mechanism of CdS QDs/TiO2 composites[39]

    MO—Methyl orange; CB—Conduction band; VB—Valence band

    图  5  CDs/TiO2复合材料的光催化机制示意图[48]

    Figure  5.  Schematic diagram of photocatalytic mechanism of CDs/TiO2 composites[48]

    RhB—Rhodamine B

    表  1  QDs/TiO2复合光催化材料的制备方法比较

    Table  1.   Comparison of method for preparation of QDs/TiO2 composite photocatalytic materials

    Preparation methodAdvantageDisadvantageReference
    Physical blending method Simple operation, no complicated equipment, and easy to be industrialization Components in composite are difficult to be dispersed evenly, and QDs tends to agglomerate [34-35]
    Water/solvent thermal method The insoluble or difficultly soluble precursors can be dissolved and recrystallized, and the obtained nanoparticles couldbe growthed more completely, smaller particle size and more uniform distribution, and the ideal crystal morphology can be easily obtained The equipment and growth conditions are demanding, the growth term is long, and the entire reaction is in a closed system, which is not intuitive and cannot be observed in real time [36-37]
    Ion layer depositionmethod It is convenient to adjust the amount and size of QDs in the composite material by changing the number of cycles When the amount of metal salt solution is too much, QDs formed in the internal voids or surface of the TiO2 material and easy to agglomerate [38]
    Electrochemical deposition method The equipment is simple, can be carried out at a lower temperature, and particle size of the composite material is adjustable Vulnerable to seasonal differences in the indoor environment, air humidity, and the concentration of coexisting interfering substances [20]
    Sol-gel method The process is simple, the equipment is inexpensive, and the obtained particle distribution is uniform The preparation takes a long time, and the hydrolysis speed of precursor is difficult to control [21]
    下载: 导出CSV

    表  2  QDs/TiO2复合光催化材料的性能及应用领域

    Table  2.   Performance and application of QDs/TiO2 composite photocatalytic materials

    MaterialPhotocatalytic performanceApplicationReference
    CdS QDs/QCDs/H-TiO2 93% of phenol, 95% of RhB and 97% of MB can be degraded
    within 30 min
    Degradation of organic pollutants [50]
    CDs/TiO2 98% of MB can be degraded within 1 h [51,62-63]
    GQDs/TiO2 42.5% of MB can be degraded within 4 h [52,64-65]
    CdTe QDs/TiO2 99.14% of MO and 99.92% of MB can be degraded within 150 min [53]
    MoS2 QDs/TiO2 92% of MB can be degraded within 40 min [54]
    CDs/TiO2 The hydrogen production rate under UV light irradiation is
    1841 μmol/(g·h)
    Photocatalytic hydrogen evolution [55]
    MoS2 QDs/TiO2 The hydrogen production rates under UV, visible, and near-infrared
    light is 31.36, 5.29, and 1.67 mol/(cm2·h), respectively
    [56,66]
    NiO QDs/TiO2 The hydrogen production rate under UV light irradiation is
    67.8 μmol/h
    [57]
    GQDs/TiO2 The hydrogen production rate under ultraviolet light irradiation
    is 206 μmol/(g·h)
    [58]
    CDs/TiO2 The output of CO and CH4 reached 1.838 μmol and 1.195 μmol
    within 6 h
    Photocatalytic CO2 Reduction [59]
    PbS QDs/TiO2 The output of CO and CH4 reached 0.82 μmol/(g·h) and 0.58 μmol/(g·h) [60]
    CsPbBr3 QDs/TiO2 The output of CO and CH4 reached 11.71 μmol/g and 20.15 μmol/g [61]
    下载: 导出CSV
  • [1] GAO M M, ZHU L L, ONG W L, et al. Structural design of TiO2 based photocatalyst for H2 production and degradation applications[J]. Catalysis science & technology,2015,5(10):4703-4726.
    [2] SCHULTZ D M, YOON T P. Solar synthesis: Prospects in visible light photocatalysis[J]. Science,2014,343(6174):1239176. doi: 10.1126/science.1239176
    [3] 畅文凯. 纳米结构二氧化钛的可控制备及其光催化和光电性能[D]. 北京: 北京化工大学, 2013.

    CHANG W K. Preparation, photocatalytic photoelectrochemical properties of nanostructured titanium dioxide[D]. Beijing: Beijing University of Chemical Technology, 2013(in Chinese).
    [4] SANTHI K, NAVANEETHAN M, HARISH S, et al. Synthesis and characterization of TiO2 nanorods by hydrothermal method with different pH conditions and their photocatalytic activity[J]. Applied Surface Science,2020,500:144058. doi: 10.1016/j.apsusc.2019.144058
    [5] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38. doi: 10.1038/238037a0
    [6] GE M Z, CAI J S, IOCOZZIA J, et al. A review of TiO2 nanostructured catalysts for sustainable H2 generation[J]. International Journal of Hydrogen Energy,2017,42(12):8418-8449. doi: 10.1016/j.ijhydene.2016.12.052
    [7] CHOI Y, KIM H I, MOON G H, et al. Boosting up the low catalytic activity of silver for H2 production on Ag/TiO2 photocatalyst: Thiocyanate as a selective modifier[J]. ACS Catalysis,2016,6(2):821-828. doi: 10.1021/acscatal.5b02376
    [8] LI Y S, HAN Y, SONG X F, et al. Sized dependence and microstructural defects on highly photocatalytic activity based on multisized CdTe quantum dots sensitized TiO2[J]. Surface and Interface Analysis,2019,51(10):968-981. doi: 10.1002/sia.6679
    [9] SAFARALIZADEHE, DARZI S J, MAHJOUB A R, et al. Visible light-induced degradation of phenolic compounds by Sudan black dye sensitized TiO2 nanoparticles as an advanced photocatalytic material[J]. Research on Chemical Intermediates,2017,43(2):1197-1209. doi: 10.1007/s11164-016-2692-7
    [10] DU J M, WANG H M, CHEN H J, et al. Synthesis and enhanced photocatalytic activity of black porous Zr-doped TiO2 monoliths[J]. Nano,2016,11(6):79-86.
    [11] XU X L, SONG W. Enhanced H2 production activity under solar irradiation over N-doped TiO2 prepared using pyridine as aprecursor: A typical sample of N-doped TiO2 series[J]. Materials Technology,2017,32(1):52-63. doi: 10.1080/10667857.2015.1118587
    [12] WANG D F, ZHAO H G, WU N Q, et al. Tuning the charge-transfer property of PbS quantum dot/TiO2 nanobelt nanohybrids via quantum confinement[J]. Journal of Physical Chemistry Letters,2010,1(7):1030-1035. doi: 10.1021/jz100144w
    [13] SHEN F Y, QUE W X, LIAO Y L, et al. Photocatalytic activity of TiO2 nanoparticles sensitized by CuInS2quantum dots[J]. Industrial & Engineering Chemistry Research,2011,50(15):9131-9137.
    [14] PAN J Q, SHENG Y Z, ZHANG J X, et al. Preparation of carbon quantum dots/TiO2 nanotubes composites and their visible light catalytic applications[J]. Journal of Materials Chemistry A,2014,2(42):18082-18086. doi: 10.1039/C4TA03528C
    [15] SHIRAL FERNANDO K A, SAHU S, LIU Y M, et al. Carbon quantum dots and applications in photocatalytic energy conversion[J]. ACS Applied Materials & Interfaces,2015,7(16):8363-8376.
    [16] TU J R, SHI X F, LU H W, et al. Facile fabrication of SnS2 quantum dots for photoreduction of aqueous Cr(VI)[J]. Materials Letters,2016,185:303-306.
    [17] WU T, LIU X J, LIU Y, et al. Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation[J]. Coordination Chemistry Reviews,2020,403:213097. doi: 10.1016/j.ccr.2019.213097
    [18] ZALFANI M, BENOIT V D S, MAHDOUANI M, et al. ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants[J]. Applied Catalysis B: Environmental,2016,199:187-198. doi: 10.1016/j.apcatb.2016.06.016
    [19] PAN D Y, JIAO J K, LI Z, et al. Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation[J]. ACS Sustainable Chemistry & Engineering,2015,3(10):2405-2413.
    [20] FENG S L, YANG J Y, LIU M. et al. CdS quantum dots sensitized TiO2 nanorod-array-film photoelectrode on FTO substrate by electrochemical atomic layer epitaxy method[J]. Electrochimica Acta,2012,83:321-326. doi: 10.1016/j.electacta.2012.07.130
    [21] WANG C, LIU X Y, CHEN C S. Enhanced photocatalytic property of graphene oxide/TiO2 hybrids with WO3 quantum dots[J]. Integrated Ferroelectrics,2018,190(1):55-62.
    [22] 高党鸽, 李亚娟, 吕斌, 等. 纳米氧化锌@碳量子点复合抗菌剂及其制备方法和应用: 中国专利, CN201810341047.2[P]. 2018-09-04.

    GAO D G, LI Y J, LV B, et al. Nanometer ZnO@carbon quantum dot composite antibacterial agent and its preparation and application: Chinese patent, CN201810341047.2[P]. 2018-09-04(in Chinese).
    [23] LIU J L, ROJAS-ANDRADE M D, CHATA G, et al. Photo-enhanced antibacterial activity of ZnO/graphene quantum dot nanocomposites[J]. Nanoscale,2018,10(1):158-166. doi: 10.1039/C7NR07367D
    [24] 段力民, 马建中, 吕斌, 等. 纳米TiO2改性及其抗紫外性能的研究进展[J]. 中国皮革, 2015, 44(3):39-43.

    DUAN L M, MA J Z, LV B, et al. Modification of nanometer TiO2 and research progress of UV-resistant[J]. China Leather,2015,44(3):39-43(in Chinese).
    [25] FAN Q Q, BIESOLD-MCGEE G V, MA J Z, et al. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties[J]. Angewandte Chemie International Edition,2019,59(3):1030-1046.
    [26] XU L, BAI X, GUO L K, et al. Facial fabrication of carbon quantumdots (CDs)-modified N-TiO2–x nanocomposite for the efficient photoreduction of Cr(VI) under visible light[J]. Chemical Engineering Journal,2019,357:473-486. doi: 10.1016/j.cej.2018.09.172
    [27] 高歌. 半导体界面调控增强光催化性能[D]. 北京: 中国科学技术大学, 2019.

    GAO G. Interface regulation of semiconductor enhances photocatalytic performance[D]. Beijing: University of Science and Technology of China, 2019(in Chinese).
    [28] GONG Y Y, WU Y J, XU Y, et al. All-solid-state Z-scheme CdTe/TiO2 heterostructure photocatalysts with enhanced visible-light photocatalytic degradation of antibiotic waste water[J]. Chemical Engineering Journal,2018,350:257-267. doi: 10.1016/j.cej.2018.05.186
    [29] 潘伦, 张靖雯, 贾旭, 等. 基于WO3–x量子点和TiO2构建高效Z型光催化产氢催化剂[J]. 催化学报, 2017, 38(2):253-259. doi: 10.1016/S1872-2067(16)62576-7

    PAN L, ZHANG J W, JIA X, et al. Highly efficient Z-scheme WO3–x quantum dots/TiO2 for photocatalytic hydrogen generation[J]. Chinese Journal of Catalysis,2017,38(2):253-259(in Chinese). doi: 10.1016/S1872-2067(16)62576-7
    [30] 夏洪波. Ag/TiO2、MS/TiO2和CsPbX3/TiO2复合材料的合成及性能研究[D]. 大连: 大连理工大学, 2019.

    XIA H B. Synthesis and performance of Ag/TiO2, MS/TiO2 and CsPbX3/TiO2 composites[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
    [31] 张小娇, 李丹红, 张蕊蕊, 等. 量子点敏化TiO2纳米管的研究进展[J]. 硅酸盐学报, 2012, 40(10):1394-1402.

    ZHANG X J, LI D H, ZHANG R R, et al. Developments on quantum dots sensitized TiO2 nanotubes[J]. Journal of the Chinese Ceramic Society,2012,40(10):1394-1402(in Chinese).
    [32] RATANATAWANATE C, XIONG C, BALKUS K J. Fabrication of PbS quantum dot doped TiO2 nanotubes[J]. ACS Nano,2008,2(8):1682-1688. doi: 10.1021/nn800141e
    [33] XIE Z, LIU X X, WANG W P, et al. Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition[J]. Nano Energy,2015,11:400-408. doi: 10.1016/j.nanoen.2014.11.024
    [34] YE M D, GONG J J, LAI Y K, et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays[J]. Journal of the American Chemical Society,2012,134(38):15720-15723. doi: 10.1021/ja307449z
    [35] ZUO Y, CHEN J, YANG H, et al. Ag-Ag2S quantum-dots modified TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic properties[J]. Journal of Alloys and Compounds,2018,780:347-354.
    [36] XU D W, LIU B, ZOU W, et al. In situ synthesis of TiO2 nanosheets@CdSe nanocomposites and the improved photocatalytic performance on removal of methylene blue[J]. Applied Surface Science,2019,487:91-100. doi: 10.1016/j.apsusc.2019.05.042
    [37] ZHANG J J, KUANG M, WANG J, et al. Fabrication of carbon quantum dots/TiO2/Fe2O3 composites and enhancement of photocatalytic activity under visible light[J]. Chemical Physics Letters,2019,730:391-398. doi: 10.1016/j.cplett.2019.06.011
    [38] MOMENI M M, MOZAFARI A A. The effect of number of SILAR cycles on morphological, optical and photo catalytic properties of cadmium sulfide-titania films[J]. Journal of Materials Science Materials in Electronics,2016,27(10):10658-10666. doi: 10.1007/s10854-016-5163-4
    [39] XIE Y, ALI G, YOO S H, et al. Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity[J]. ACS Applied Materials & Interfaces,2010,2(10):2910-2914.
    [40] PARK J, KIM S, KIM S, et al. Fabrication of highly luminescent InP/Cd and InP/CdS quantum dots[J]. Journal of Luminescence,2010,130(10):1825-1828. doi: 10.1016/j.jlumin.2010.04.017
    [41] NIU M, CAO D P, SUI K Y, et al. InP/TiO2 heterojunction for photoelectrochemical water splitting under visible-light[J]. International Journal of Hydrogen Energy,2020,45(20):11615-11624. doi: 10.1016/j.ijhydene.2020.02.094
    [42] ZHOU Q L, LI L, WANG J X, et al. Synergistic effect of ZnO QDs and Sn4+ ions to control anatase-rutile phase of three-dimensional ordered hollow sphere TiO2 with enhanced photodegradation and hydrogen evolution[J]. Applied Surface Science,2019,481:1185-1195. doi: 10.1016/j.apsusc.2019.03.170
    [43] PETERSON J J, KRAUSS T D. Fluorescence spectroscopy of single lead sulfide quantum dots[J]. Nano Letters,2006,6(3):510-514. doi: 10.1021/nl0525756
    [44] RATANATAWANATE C, TAO Y, BALKUS K J. Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites[J]. The Journal of Physical Chemistry C,2009,113(24):10755-10760. doi: 10.1021/jp903050h
    [45] WU C F, WANG H, YAN Q M, et al. Doping of thermoelectric PbSe with chemically inert secondary phase nanoparticles[J]. Journal of Materials Chemistry C,2017,5(41):10881-10887. doi: 10.1039/C7TC03614K
    [46] GYŐRI Z, KÓNYA Z, KUKOVECZ Á. Visible light activation photocatalytic performance of PbSe quantum dot sensitized TiO2 Nanowires[J]. Applied Catalysis B: Environmental,2015,179:583-588. doi: 10.1016/j.apcatb.2015.05.056
    [47] MIAO X, YUE X, JI Z, et al. Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight[J]. Applied Catalysis B: Environmental,2018,227:459-469. doi: 10.1016/j.apcatb.2018.01.057
    [48] ZHANG J T, CAO Y H, ZHAO P, et al. Visible-light-driven pollutants degradation with carbon quantum dots/N-TiO2 under mild condition: Facile preparation, dramatic performance and deep mechanism insight[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,601:125019. doi: 10.1016/j.colsurfa.2020.125019
    [49] HU Y D, XIE X F, WANG X, et al. Visible-light upconversion carbon quantum dots decorated TiO2 for the photodegradation of flowing gaseous acetaldehyde[J]. Applied Surface Science,2018,440:266-274. doi: 10.1016/j.apsusc.2018.01.104
    [50] KHAN U A, LIU J, PAN J, et al. Fabrication of highly efficient and hierarchical CdS QDs/CQDs/H-TiO2 ternary heterojunction: Surpassable photocatalysis under sun-like illumination[J]. Industrial & Engineering Chemistry Research,2018,58(1):79-91.
    [51] RAN M, ZHU L, WEI Z, et al. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst[J]. Applied Catalysis B: Environmental,2016,189:26-38. doi: 10.1016/j.apcatb.2016.01.070
    [52] ZUBAIR M, KIM H, RAZZAQ A, et al. Solar spectrum photocatalytic conversion of CO2 to CH4 utilizing TiO2 nanotube arrays embedded with graphene quantum dots[J]. Journal of CO2 Utilization,2018,26:70-79. doi: 10.1016/j.jcou.2018.04.004
    [53] LI Y S, YAN H, SONG X F, et al. Sized dependence and microstructural defects on highly photocatalytic activity based on multisized CdTe quantum dots sensitized TiO2[J]. Surface and Interface Analysis,2019,51(10):1-14.
    [54] ZHAO F F, RONG Y F, WAN J M, et al. MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis[J]. Nanotechnology,2018,29(10):1-25.
    [55] ZHOU Y, YANG S, FAN D, et al. Carbon quantum dot/TiO2 nanohybrids: Efficient photocatalysts for hydrogen generation via intimate contact and efficient charge separation[J]. ACS Applied Nano Materials,2019,2(2):1027-1032. doi: 10.1021/acsanm.8b02310
    [56] WANG Q, HUANG J Y, SUN H T, et al. MoS2 quantum dots@TiO2 nanotube arrays: An extended spectrum-driven photocatalyst for solar hydrogen evolution[J]. Chemsuschem,2018,11(10):1708-1721. doi: 10.1002/cssc.201800379
    [57] HONG W Z, ZHOU Y S, LV C, et al. NiO quantum dot modified TiO2 toward robust hydrogen production performance[J]. ACS Sustainable Chemistry & Engineering,2018,6(1):889-896.
    [58] HAO X, JIN Z, XU J, et al. Functionalization of TiO2 with graphene quantum dots for efficient photocatalytic hydrogen evolution[J]. Superlattices Microstruct,2016,94:237-244. doi: 10.1016/j.spmi.2016.04.024
    [59] LI M L, WANG M, ZHU L F, et al. Facile microwave assisted synthesis of N-rich carbon quantum dots/dual-phase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction[J]. Applied Catalysis B: Environmental,2018,231:269-276. doi: 10.1016/j.apcatb.2018.03.027
    [60] WANG C, THOMPSON R L, OHODNICKI P, et al. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts[J]. Journal of Materials Chemistry,2011,21(35):13452-13457. doi: 10.1039/c1jm12367j
    [61] XU Y F, WANG X D, LIAO J F. et al. Amorphous-TiO2-encapsulated CsPbBr3 nanocrystal composite photocatalyst with enhanced charge separation and CO2 fixation[J]. Advanced materials interfaces,2018,5(22):1801015-1801022. doi: 10.1002/admi.201801015
    [62] CHEN Z Y, WU Y S, WANG Q C, et al. Oxygen-rich carbon-nitrogen quantum dots as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanofibers[J]. Progress in Natural Science,2017,27(3):333-337. doi: 10.1016/j.pnsc.2017.04.011
    [63] SHI R, LI Z, YU H J, et al. Effect of nitrogen doping level on the performance of N-Doped carbon quantum dot/TiO2 composites for photocatalytic hydrogen evolution[J]. ChemSusChem,2017,10(22):4650-4656.
    [64] YU Y F, REN J L, MENG M. Photocatalytic hydrogen evolution on graphene quantum dots anchored TiO2 nanotubes-array[J]. International Journal of Hydrogen Energy,2013,38(28):12266-12272. doi: 10.1016/j.ijhydene.2013.07.039
    [65] YU S, ZHONG Y Q, YU B Q, et al. Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet[J]. Physical Chemistry Chemical Physics,2016,18(30):20338-20344. doi: 10.1039/C6CP02561G
    [66] ZHUANG H Q, CHEN W J, XU W T, et al. Facile synthesis of MoS2 QDs/TiO2 nanosheets via a self ssembly strategy for enhanced photocatalytic hydrogen production[J]. International Journal of Energy Research,2020,44(4):3224-3230. doi: 10.1002/er.5153
    [67] YAN H L, LIU L Z, WANG R, et al. Binary composite MoS2/TiO2 nanotube arrays as a recyclable and efficient photocatalyst for solar water disinfection[J]. Chemical Engineering Journal,2020,401:126052. doi: 10.1016/j.cej.2020.126052
    [68] CHONG M N, JIN B, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: A review.[J]. Water Research,2010,44(10):2997-3027. doi: 10.1016/j.watres.2010.02.039
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1432
  • HTML全文浏览量:  786
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 录用日期:  2020-10-26
  • 网络出版日期:  2020-11-09
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回