留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性剂对纳米片状羟基磷灰石/聚乳酸复合材料性能的影响

黄梽焕 万怡灶 朱享波 张全超 杨志伟 罗红林

黄梽焕, 万怡灶, 朱享波, 等. 改性剂对纳米片状羟基磷灰石/聚乳酸复合材料性能的影响[J]. 复合材料学报, 2021, 38(3): 749-760. doi: 10.13801/j.cnki.fhclxb.20201028.001
引用本文: 黄梽焕, 万怡灶, 朱享波, 等. 改性剂对纳米片状羟基磷灰石/聚乳酸复合材料性能的影响[J]. 复合材料学报, 2021, 38(3): 749-760. doi: 10.13801/j.cnki.fhclxb.20201028.001
HUANG Zhihuan, WAN Yizao, ZHU Xiangbo, et al. Effect of modifier on properties of nano-platelet hydroxyapatite/polylactic acid composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 749-760. doi: 10.13801/j.cnki.fhclxb.20201028.001
Citation: HUANG Zhihuan, WAN Yizao, ZHU Xiangbo, et al. Effect of modifier on properties of nano-platelet hydroxyapatite/polylactic acid composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 749-760. doi: 10.13801/j.cnki.fhclxb.20201028.001

改性剂对纳米片状羟基磷灰石/聚乳酸复合材料性能的影响

doi: 10.13801/j.cnki.fhclxb.20201028.001
基金项目: 国家自然科学基金(51662009;31660264;32000947)
详细信息
    通讯作者:

    罗红林,博士,副教授,硕士生导师,研究方向为生物医用复合材料  E-mail:hlluo@tju.edu.cn

  • 中图分类号: TB332; TQ332

Effect of modifier on properties of nano-platelet hydroxyapatite/polylactic acid composites

  • 摘要: 分别采用硅烷偶联剂(SC)和硬脂酸(SA)对纳米层片状羟基磷灰石(LHAp)进行表面改性,并通过挤塑工艺制备未改性和两种改性纳米片状羟基磷灰石(np-HAp)增强聚乳酸(PLA) (np-HAp/PLA、SC-np-HAp/PLA和SA-np-HAp/PLA)复合材料。比较了三种复合材料的微观结构、力学性能、热稳定性、结晶性及润湿性。利用XRD、FTIR、XPS、SEM、TGA、DSC、力学性能测试和接触角测试对复合材料的理化性能进行表征。研究发现,np-HAp、SA-np-HAp与PLA界面处存在相分离,而SC-np-HA与PLA两相界面结合紧密;与np-HAp/PLA复合材料相比,SC-np-HAp/PLA复合材料的压缩屈服强度和拉伸强度分别提高了9.4%和6.6%,而SA-np-HAp/PLA复合材料的压缩屈服强度和拉伸强度则出现减小;此外,与np-HAp/PLA复合材料相比,SC-np-HAp/PLA和SA-np-HAp/PLA复合材料的初始分解温度分别提高了7.4%和5.6%,SC-np-HAp/PLA复合材料的结晶度提高了6.7%,SA-np-HAp/PLA复合材料的结晶度则减小了3.5%。水接触角测试结果表明,与np-HAp/PLA复合材料和SA-np-HAp/PLA复合材料相比,SC-np-HAp/PLA复合材料具有更为优异的亲水性。上述结果表明,经SC改性后的np-HAp具有与PLA基体更好的界面结合能力,为制备性能优异的骨植入复合材料提供借鉴。

     

  • 图  1  纳米片状羟基磷灰石/聚乳酸(np-HAp/PLA)复合材料的制流程示意图

    Figure  1.  Schematic diagram of preparation of nano-platelet hydroxyapatite/polylactic acid (np-HAp/PLA) composites

    图  2  层片状羟基磷灰石(LHAp)、硬脂酸(SA)-np-HAp、硅烷偶联剂(SC)-np-HAp ((a),(b))及其复合材料(c)的XRD图谱;SC、SA、LHAp、SA-np-HAp和SC-np-HAp的FTIR图谱(d);LHAp (e)、SA-np-HAp (f)和SC-np-HAp (g)的O1s高分辨XPS图谱;SA和SC与np-HAp的结合过程示意图(h)

    Figure  2.  XRD patterns of lamellar hydroxyapatite (LHAp), stearic acid (SA)-np-HAp, silane coupling agent (SC)-np-HAp ((a), (b)) and PLA compsites (c); FTIR spectra of SC, SA, LHAp, SA-np-HAp and SC-np-HAp (d); High resolution XPS O1s spectra of LHAp (e), SA-np-HAp (f) and SC-np-HAp (g); Schematic illustration showing interaction between SA/SC and np-HAp (h)

    图  3  PLA、np-HAp/PLA、SA-np-HAp/PLA和SC-np-HAp/PLA复合材料的压缩(a)和拉伸(b)应力-应变曲线

    Figure  3.  Representative compression (a) and tensile (b) stress-strain curves of PLA, np-HAp/PLA, SA-np-HAp/PLA and SC-np-HAp/PLA composites

    图  4  PLA、np-HAp/PLA、SA-np-HAp/PLA、SC-np-HAp/PLA复合材料拉伸断口的SEM图像

    Figure  4.  SEM images of tensile fracture of PLA, np-HAp/PLA, SA-np-HAp/PLA, SC-np-HAp/PLA composites

    图  5  PLA、np-HAp/PLA、SA-np-HAp/PLA和SC-np-HAp/PLA复合材料的TGA (a)和DTG (b)曲线

    Figure  5.  TGA (a) and DTG (b) curves of PLA, np-HAp/PLA, SA-np-HAp/PLA and SC-np-HAp/PLA composites

    图  6  PLA、np-HAp/PLA、SA-np-HAp/PLA和SC-np-HAp/PLA复合材料的DSC曲线

    Figure  6.  DSC curves of PLA, np-HAp/PLA, SA-np-HAp/PLA and SC-np-HAp/PLA composites

    图  7  PLA、np-HAp/PLA、SA-np-HAp/PLA和SC-np-HAp/PLA复合材料表面的润湿性(p<0.05,n=6) (a)和表面润湿性示意图(b)

    Figure  7.  Water contact angles (a) and schematic diagram of wettability (b) of PLA, np-HAp/PLA, SA-np-HAp/PLA and SC-np-HAp/PLA composites (p < 0.05, n=6 in each group)

    表  1  PLA、np-HAp/PLA、SA-np-HAp/PLA和SC-np-HAp/PLA复合材料的力学性能

    Table  1.   Mechanical properties of PLA, np-HAp/PLA, SA-np-HAp/PLA and SC-np-HAp/PLA composites

    MaterialCompressive yield strength/MPaCompression modulus/MPaTensile strength/MPaYoung’s modulus/MPa
    PLA 74.6 (4.6) 424.8 (12.2) 68.7 (1.2) 714.9 (21.4)
    np-HAp/PLA 84.7 (3.4) 525.1 (38.9) 76.0 (1.6) 838.5 (16.2)
    SA-np-HAp/PLA 76.0 (3.3) 576.6 (44.0) 72.1 (1.1) 797.8 (22.5)
    SC-np-HAp/PLA 92.7 (1.4) 614.6 (27.6) 81.0 (0.8) 832.1 (12.9)
    Note: Values in the parentheses represent the standard deviations of replicates.
    下载: 导出CSV

    表  2  PLA、np-HAp/PLA、SA-np-HAp/PLA和SC-np-HAp/PLA复合材料的热稳定性

    Table  2.   Thermal stability of PLA, np-HAp/PLA, SA-np-HAp/PLA and SC-np-HAp/PLA composites

    MaterialPLAnp-HAp/PLASA-np-HAp/PLASC-np-Ap/PLA
    Tonset/℃ 353.3 364.0 384.6 391.0
    T50%/℃ 395.6 415.6 420.0 426.7
    Rm/% 0 5.3 6.0 8.9
    Notes: Tonset—Initial decomposition temperature; T50%—Unstable state temperature; Rm—Residual mass at 600℃.
    下载: 导出CSV

    表  3  PLA、np-HAp/PLA、SA-np-HAp/PLA和SC-np-HAp/PLA复合材料在加热和冷却过程中的DSC热参数

    Table  3.   Thermal parameters of PLA, np-HAp/PLA, SA-np-HAp/PLA and SC-np-HAp/PLA composites in DSC analysis during heating and cooling

    MaterialTg/℃Tcc/℃ΔHcc/(J·g–1)Tm/℃ΔHm/(J·g–1)χc/%
    PLA 60.2 110.2 33.2 169.3 14.7 21.9
    np-HAp/PLA 60.5 96.4 9.55 168.1 41.1 37.4
    SA-np-HAp/PLA 60.0 99.2 13.6 167.5 42.2 33.9
    SC-np-HAp/PLA 60.0 167.1 37.2 44.1
    Notes: Tg—Glass transition temperature; Tcc—Cold crystallization temperature; ΔHcc—Cold crystallization enthalpy; Tm—Melting temperature; ΔHm—Melting enthalpy; χc—Crystallinity.
    下载: 导出CSV
  • [1] OLSZTA M J, CHENG X, JEE S S, et al. Bone structure and formation: A new perspective[J]. Materials Science and Engineering R: Reports,2007,58(3-5):77-116. doi: 10.1016/j.mser.2007.05.001
    [2] SARANYA N, SARAVANAN S, MOORTHI A, et al. Enhanced osteoblast adhesion on polymeric nano-scaffolds for bone tissue engineering[J]. Journal of Biomedical Nanotechnology,2011,7(2):238-244. doi: 10.1166/jbn.2011.1283
    [3] ZHENG J, LI Y, SHI M, et al. Microtribological behaviour of human tooth enamel and artificial hydroxyapatite[J]. Tribology International,2013,63:177-185. doi: 10.1016/j.triboint.2012.04.019
    [4] ZHOU H, LAWRENCE J G, BHADURI S B. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review[J]. Acta Biomaterialia,2012,8(6):1999-2016. doi: 10.1016/j.actbio.2012.01.031
    [5] GUPTA B, REVAGADE N, HILBORN J. Poly(lactic acid) fiber: An overview[J]. Progress in Polymer Science,2007,32(4):455-482. doi: 10.1016/j.progpolymsci.2007.01.005
    [6] KANGO S, KALIA S, CELLI A, et al. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites: A review[J]. Progress in Polymer Science,2013,38(8):1232-1261. doi: 10.1016/j.progpolymsci.2013.02.003
    [7] 杨春瑜, 杨春莉, 田晓红, 等. 改性羟基磷灰石/聚乳酸复合材料制备及其生物相容性评价[J]. 西安交通大学学报, 2010, 44(12):114-118.

    YANG C Y, YANG C L, TIAN X H, et al. Preparation and biocompatibility evaluation of modified hydroxyapatite/poly L-lactic acid composites[J]. Journal of Xi’an Jiaotong University,2010,44(12):114-118(in Chinese).
    [8] ZHANG S, LIU J, ZHOU W, et al. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites[J]. Current Applied Physics,2005,5(5):516-518. doi: 10.1016/j.cap.2005.01.023
    [9] SOMASUNDARAM S. Silane coatings of metallic biomaterials for biomedical implants: A preliminary review[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2018,106(8):2901-2918. doi: 10.1002/jbm.b.34151
    [10] ZHANG Q, YIE G, LI Y, et al. Studies on the cyclosporin a loaded stearic acid nanoparticles[J]. International Journal of Pharmaceutics,2000,200(2):153-159. doi: 10.1016/S0378-5173(00)00361-6
    [11] LIU J, ZHENG B, WANG P, et al. Enhanced in vitro and in vivo performance of Mg-Zn-Y-Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application[J]. ACS Applied Materials & Interfaces,2016,8(28):17842-17858.
    [12] WANG X, SONG G, LOU T. Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite[J]. Medical Engineering & Physics,2010,32(4):391-397.
    [13] SUN J, CAO Z, WU L. Polyvinylidene fluoride/silane-treated hydroxyapatite mixed matrix membrane for enzyme capturing[J]. Colloids and Surfaces B: Biointerfaces,2015,126:265-272. doi: 10.1016/j.colsurfb.2014.12.034
    [14] DENG C, WENG J, DUAN K, et al. Preparation and mechanical property of poly(s-caprolactone)-matrix composites containing nano-apatite fillers modified by silane coupling agents[J]. Journal of Materials Science Materials in Medicine,2010,21(12):3059-3064. doi: 10.1007/s10856-010-4158-6
    [15] DUPRAZ A, MEER S A T V D, DE WIJN J, et al. Biocompatibility screening of silane-treated hydroxyapatite powders, for use as filler in resorbable composites[J]. Journal of Materials Science: Materials in Medicine,1996,7(12):731-738. doi: 10.1007/BF00121408
    [16] KIM K J, WHITE J L, SHIM S E, et al. Effects of stearic acid coated talc, CaCO3, and mixed talc/CaCO3 particles on the rheological properties of polypropylene compounds[J]. Journal of Applied Polymer Science,2004,93(5):2105-2113. doi: 10.1002/app.20686
    [17] ZHANG X, LI Q, LI L, et al. Fabrication of hydroxyapatite/stearic acid composite coating and corrosion behavior of coated magnesium alloy[J]. Materials Letters,2012,88:76-78. doi: 10.1016/j.matlet.2012.08.011
    [18] YANG X, LU X, GE J, et al. Effect of a silane coupling agent on mechanical properties of hydroxyapatite/polycaprolactone composites[J]. Key Engineering Materials,2007,361-363:531-534.
    [19] GONSALVES J, FERRO J, BARRETO E, et al. Influence of concentration of hydroxyapatite surface modifier agent on bioactive composite characteristics[J]. Ceramics International,2016,42(15):17023-17031. doi: 10.1016/j.ceramint.2016.07.210
    [20] NAIR A, GAUTIERI A, CHANG S W, et al. Molecular mechanics of mineralized collagen fibrils in bone[J]. Nature Communications,2013,4:1724. doi: 10.1038/ncomms2720
    [21] REY C, COMBES C, DROUET C, et al. Bone mineral: Update on chemical composition and structure[J]. Osteoporosis International,2009,20(6):1013-1021. doi: 10.1007/s00198-009-0860-y
    [22] ZHOU H, LEE J. Nanoscale hydroxyapatite particles for bone tissue engineering[J]. Acta Biomaterialia,2011,7(7):2769-2781. doi: 10.1016/j.actbio.2011.03.019
    [23] JANDAS P J, MOHANTY S, NAYAK S K. Surface treated banana fiber reinforced poly(lactic acid) nanocomposites for disposable applications[J]. Journal of Cleaner Production,2013,52:392-401. doi: 10.1016/j.jclepro.2013.03.033
    [24] HUANG Z, WAN Y, PENG M, et al. Incorporating nanoplate-like hydroxyapatite into polylactide for biomimetic nanocomposites via direct melt intercalation[J]. Composites Science and Technology,2019,185:107903.
    [25] LIU S, LI Y, SUN H, et al. Preparation and characterisation of a lamellar hydroxyapatite/polylactic acid composite[J]. Plastics Rubber & Composites,2019,48(2):66-73.
    [26] LUO H L, LI W, JI D H, et al. One-step exfoliation and surface modification of lamellar hydroxyapatite by intercalation of glucosamine[J]. Materials Chemistry and Physics,2016,173:262-267.
    [27] WAN Y, WU C, ZUO G, et al. Controlled template synthesis of lamellar hydroxyapatite nanoplates as a potential carrier for gene delivery[J]. Materials Chemistry and Physics,2015,156:238-246. doi: 10.1016/j.matchemphys.2015.03.011
    [28] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of tensile properties Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [29] 中国国家标准化管理委员会. 塑料 压缩性能的测定: GB/T 1041—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics: Detemination of compressive properties: GB/T 1041—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [30] XU H, XIE L, CHEN J B, et al. Strong and tough micro/nanostructured poly(lactic acid) by mimicking the multifunctional hierarchy of shell[J]. Materials Horizons,2014,1(5):546-552. doi: 10.1039/C4MH00085D
    [31] KOSTOV-KYTIN V V, DYULGEROVA E, ILIEVA R, et al. Powder X-ray diffraction studies of hydroxyapatite and β-TCP mixtures processed by high energy dry milling[J]. Ceramics International,2018,44(7):8664-8671. doi: 10.1016/j.ceramint.2018.02.094
    [32] RUAN B, WU P, LAI X, et al. Effects of Sphingomonas sp. GY2B on the structure and physicochemical properties of stearic acid-modified montmorillonite in the biodegradation of phenanthrene[J]. Applied Clay Science,2018,156:36-44. doi: 10.1016/j.clay.2018.01.009
    [33] MILICEVIC D, SULJOVRUJIC E. The influence of the preparation conditions and filler content on thermal properties of poly-L-lactide and hydroxyapatite/poly-L-lactide nanocomposite[J]. Polymer International,2017,66(9):1275-1283. doi: 10.1002/pi.5382
    [34] FUJIMORI H, TOYA H, IOKU K, et al. In situ observation of defects in hydroxyapatite up to 1 200℃ by ultraviolet Raman spectroscopy[J]. Chemical Physics Letters,2000,325(4):383-388. doi: 10.1016/S0009-2614(00)00695-3
    [35] LIU S, LI Y, SUN H, et al. Preparation and characterisation of a lamellar hydroxyapatite/polylactic acid composite[J]. Plastics Rubber and Composites,2019,48(2):66-73. doi: 10.1080/14658011.2018.1548191
    [36] YANG J M, WEN C L, HAO T L. Properties of HTPB based polyurethane membrane prepared by epoxidation method[J]. Journal of Membrane Science,2001,183(1):37-47.
    [37] MARCOMINI A L, REGO B T, SUMAN BRETAS R E. Improvement of the short-and long-term mechanical properties of injection-molded poly(etheretherketone) and hydroxyapatite nanocomposites[J]. Journal of Applied Polymer Science,2017,134(7):44476-44490.
    [38] PAN Y S. Surface modification of nanocrystalline hydroxyapatite[J]. Micro & Nano Letters,2011,6(3):129-130.
    [39] ZUO G, WAN Y, MENG X, et al. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid[J]. Materials Chemistry and Physics,2011,126(3):470-475. doi: 10.1016/j.matchemphys.2010.12.060
    [40] LI Y, WENG W. Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors[J]. Journal of Materials Science: Materials in Medicine,2008,19(1):19-25. doi: 10.1007/s10856-007-3123-5
    [41] JIANG L Y, XIONG C D, CHEN D L, et al. Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite[J]. Applied Surface Science,2012,259:72-78. doi: 10.1016/j.apsusc.2012.06.091
    [42] LAM R, QUARONI L, PEDERSON T, et al. A molecular insight into the nature of crystallographic mismatches in self-assembled fibrillar networks under non-isothermal crystallization conditions[J]. Soft Matter,2010,6(2):404-408. doi: 10.1039/B919477K
    [43] SALEM H, ABDELRAHIM M, EID K A, et al. Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler[J]. International Journal of Nanomedicine,2011,6(2):311-320. doi: 10.2217/nnm.11.1
    [44] WANG X, LI Y, JIE W, et al. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites[J]. Biomaterials,2002,23(24):4787-4791. doi: 10.1016/S0142-9612(02)00229-6
    [45] LIAO J G, WANG X J, ZUO Y, et al. Surface Modification of nano-hydroxyapatite with silane agent[J]. Journal of Inorganic Materials,2008,23(1):145-149. doi: 10.3724/SP.J.1077.2008.00145
    [46] RAN X, YU X, HE J, et al. Molecular mechanism of nano-hydroxyapatite surface changes from hydrophilic to hydrophobic[J]. Asian Journal of Chemistry,2014,26(17):5355-5359. doi: 10.14233/ajchem.2014.18110
    [47] DIAO H, SI Y, ZHU A, et al. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility[J]. Materials Science and Engineering C,2012,32(7):1796-1801. doi: 10.1016/j.msec.2012.04.065
    [48] FANG Z, FENG Q. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite[J]. Materials Science and Engineering C,2014,35:190-194.
    [49] RAKMAE S, RUKSAKULPIWAT Y, SUTAPUN W, et al. Effect of silane coupling agent treated bovine bone based carbonated hydroxyapatite on in vitro degradation behavior and bioactivity of PLA composites[J]. Materials Science and Engineering C,2012,32(6):1428-1436. doi: 10.1016/j.msec.2012.04.022
    [50] ZHU J, UHL F M, MORGAN A B, et al. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability[J]. Chemistry of Materials,2001,13(12):4649-4654. doi: 10.1021/cm010451y
    [51] NAIR K M, THOMAS S, GROENINCKX G. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres[J]. Composites Science and Technology,2001,61(16):2519-2529. doi: 10.1016/S0266-3538(01)00170-1
    [52] LEE J H, PARK T G, PARK H S, et al. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold[J]. Biomaterials,2003,24(16):2773-2778. doi: 10.1016/S0142-9612(03)00080-2
    [53] CHOW W S, LOK S K. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites[J]. Journal of Thermal Analysis and Calorimetry,2009,95(2):627-632.
    [54] PAUL M A, ALEXANDRE M L, DEGÉE P, et al. New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: Thermal and morphological study[J]. Polymer,2003,44(2):443-450.
    [55] MARTIN O, AVÉROUS L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems[J]. Polymer,2001,42(14):6209-6219. doi: 10.1016/S0032-3861(01)00086-6
    [56] DAY M, NAWABY A V, LIAO X. A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites[J]. Journal of Thermal Analysis & Calorimetry,2006,86(3):623-629.
    [57] WANG H, SUN X, SEIB P. Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate[J]. Journal of Applied Polymer Science,2001,82(7):1761-1767. doi: 10.1002/app.2018
    [58] SZUSTAKIEWICZ K, GAZIŃSKA M, KRYSZAK B, et al. The influence of hydroxyapatite content on properties of poly(L-lactide)/hydroxyapatite porous scaffolds obtained using thermal induced phase separation technique[J]. European Polymer Journal,2019,113:313-320. doi: 10.1016/j.eurpolymj.2019.01.073
    [59] SANJAY S L, ANNASO B G, CHAVAN S M, et al. Recent progress in preparation of superhydrophobic surfaces: A review[J]. Journal of Surface Engineered Materials and Advanced Technology,2012,2(2):76-94.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1399
  • HTML全文浏览量:  400
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 录用日期:  2020-10-23
  • 网络出版日期:  2020-10-28
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回