留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纺织复合材料预制体成型过程无损检测技术研究进展

项赫 姜亚明 齐业雄 林温妮 王秀娟 戚晓玲 田慧

项赫, 姜亚明, 齐业雄, 等. 纺织复合材料预制体成型过程无损检测技术研究进展[J]. 复合材料学报, 2021, 38(4): 1029-1042. doi: 10.13801/j.cnki.fhclxb.20201021.002
引用本文: 项赫, 姜亚明, 齐业雄, 等. 纺织复合材料预制体成型过程无损检测技术研究进展[J]. 复合材料学报, 2021, 38(4): 1029-1042. doi: 10.13801/j.cnki.fhclxb.20201021.002
XIANG He, JIANG Yaming, QI Yexiong, et al. Research progress in nondestructive testing technologies for textile composite preform forming process[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1029-1042. doi: 10.13801/j.cnki.fhclxb.20201021.002
Citation: XIANG He, JIANG Yaming, QI Yexiong, et al. Research progress in nondestructive testing technologies for textile composite preform forming process[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1029-1042. doi: 10.13801/j.cnki.fhclxb.20201021.002

纺织复合材料预制体成型过程无损检测技术研究进展

doi: 10.13801/j.cnki.fhclxb.20201021.002
基金项目: 航空科学基金(201829Q2002);天津市自然科学基金重点项目(18JCZDJC10020);天津市自然科学基金(18JCQNJC73300)
详细信息
    通讯作者:

    姜亚明,博士,教授,博士生导师,研究方向为先进纺织增强材料及其复合材料 E-mail:jiangyaming@tiangong.edu.cn

  • 中图分类号: TB332

Research progress in nondestructive testing technologies for textile composite preform forming process

  • 摘要: 纺织复合材料多为各向异性材料,其力学性能很大程度上取决于成型后预制体内纤维的取向。为确保预制体成型后纤维的取向符合产品设计的要求,目前已有多种无损检测技术为纺织复合材料预制体成型过程及质量的检测提供服务。本文结合纺织复合材料预制体织造技术的发展趋势及预制体成型过程对无损检测的需求,就目前广泛用于科研和产业化生产当中的多种无损检测技术(包括接触式测量技术、光学检测技术、热成像检测技术、涡流检测技术、射线检测技术)进行了综述,总结各方法所具有的技术特点、应用情况与存在问题。最后,讨论了纺织复合材料预制体成型过程无损检测技术的发展趋势和面临的挑战。

     

  • 图  1  预制体上标记点阵和网格线

    Figure  1.  A set of reference point grid and square grid

    图  2  使用三坐标测量仪测量预制体变形情况[26]

    Figure  2.  Measuring the deformation of preform with coordinate measuring machine[26]

    图  3  对样品喷涂散斑[39]

    Figure  3.  Spray paint on the perform[39]

    图  4  三维数字应变测量技术测量预制体成型过程[35]

    Figure  4.  3D digital strain analysis system for perform forming process measurement[35]

    图  5  成型结果和扫描结果[48]

    Figure  5.  Forming result and scanning result[48] ((a) Drapeability tester; (b) Area between the circles is scanned by laser sensor; (c) 3D model of scanned surface)

    图  6  扫描过程与图像处理结果[53]

    Figure  6.  Scanning process and image processing result[53] ((a) Scanning process; (b) Local forming result; (c) Edge detection result; (d) Whole image processing result)

    图  7  扫描过程与图像处理结果[58]

    Figure  7.  Scanning process and image processing result[58]

    图  8  扫描过程和电导率数据成像结果[68]

    Figure  8.  Scanning process and resulting conductivity map[68]

    图  9  扫描过程与分析结果[77]

    Figure  9.  Scanning process and analysis result[77]

    图  10  CT扫描结果与数值模拟结果[72]

    Figure  10.  CT scanning result and numerical modeling result[72]

  • [1] WAMBUA P M, ANANDJIWALA R. A review of preforms for the composites industry[J]. Journal of Industrial Textiles,2011,40(4):310-333. doi: 10.1177/1528083709092014
    [2] BUSSETTA Philippe, CORREIA Nuno. Numerical forming of continuous fibre reinforced composite material: A review[J]. Composites Part A: Applied Science and Manufacturing,2018,113:12-31. doi: 10.1016/j.compositesa.2018.07.010
    [3] SKORDOS A A, MONROY ACEVES C, SUTCLIFFE M P F. A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites[J]. Composites Part A: Applied Science and Manufacturing,2007,38(5):1318-1330. doi: 10.1016/j.compositesa.2006.11.005
    [4] GEREKE Thomas, DÖBRICH Oliver, HÜBNER Matthias, et al. Experimental and computational composite textile reinforcement forming: A review[J]. Composites Part A: Applied Science and Manufacturing,2013,46:1-10. doi: 10.1016/j.compositesa.2012.10.004
    [5] KÄRGER Luise, BERNATH Alexander, FRITZ Florian, et al. Development and validation of a CAE chain for unidirectional fibre reinforced composite components[J]. Composite Structures,2015,132:350-358. doi: 10.1016/j.compstruct.2015.05.047
    [6] BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations[J]. Composites Part B: Engineering,2018,141:234-249. doi: 10.1016/j.compositesb.2017.12.061
    [7] YOKOZEKI Tomohiro, OGASAWARA Toshio, ISHIKAWA Takashi. Nonlinear behavior and compressive strength of unidirectional and multidirectional carbon fiber compo-site laminates[J]. Composites Part A: Applied Science and Manufacturing,2006,37(11):2069-2079. doi: 10.1016/j.compositesa.2005.12.004
    [8] KAWAI M, SUDA H. Effects of non-negative mean stress on the off-axis fatigue behavior of unidirectional carbon/epoxy composites at room temperature[J]. Journal of Composite Materials,2016,38(10):833-854.
    [9] BARDL Georg, NOCKE Andreas, CHERIF Chokri, et al. Automated detection of yarn orientation in 3D-draped carbon fiber fabrics and preforms from eddy current data[J]. Composites Part B: Engineering,2016,96:312-324. doi: 10.1016/j.compositesb.2016.04.040
    [10] LEE Minsik, KANG Chunggil. Determination of forming procedure by numerical analysis and investigation of mechanical properties of steel/CFRP hybrid composites with complicated shapes[J]. Composite Structures,2017,164:118-129. doi: 10.1016/j.compstruct.2016.10.021
    [11] 杨雪勤, 张骁骅. 航空航天用复合材料的无损检测和自修复研究进展[J]. 纺织导报, 2018(S1):92-98.

    YANG Xueqin, ZHANG Xiaohua. Progress in non-destructive testing and self-healing of composite materials in the aerospace field[J]. China Textile Leader,2018(S1):92-98(in Chinese).
    [12] XIANG He, JIANG Yaming, QI Yexiong, et al. Process-induced distortions characterization of MBWK fabric reinforced composite helmet shell[J]. Materials,2020,13(13):2983. doi: 10.3390/ma13132983
    [13] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7):1787-1803.

    MA Baoquan, ZHOU Zhenggan. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Acta Aeronautica et Astronautica Sinica,2014,35(7):1787-1803(in Chinese).
    [14] 刘松平, 刘菲菲, 李乐刚, 等. 航空复合材料无损检测与评估技术研究进展回顾[J]. 航空制造技术, 2019, 62(14):14-27.

    LIU Songping, LIU Feifei, LI Legang, et al. Review of research progress on nondestructive testing and evaluation techniques for aero-composites[J]. Aeronautical Manufacturing Technology,2019,62(14):14-27(in Chinese).
    [15] 王奕首, 卿新林. 复合材料连接结构健康监测技术研究进展[J]. 复合材料学报, 2016, 33(1):1-16.

    WANG Yishou, QING Xinlin. Progress on study of structural health monitoring technology for composite joints[J]. Acta Materiae Compositae Sinica,2016,33(1):1-16(in Chinese).
    [16] HENNING Frank, KÄRGER Luise, DÖRR Dominik, et al. Fast processing and continuous simulation of automotive structural composite components[J]. Composites Science and Technology,2019,171:261-279. doi: 10.1016/j.compscitech.2018.12.007
    [17] FLEISCHER Jürgen, TETI Roberto, LANZA Gisela, et al. Composite materials parts manufacturing[J]. CIRP Annals,2018,67(2):603-626. doi: 10.1016/j.cirp.2018.05.005
    [18] LABANIEH A R, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composites Part A: Applied Science and Manufacturing,2018,107:432-446. doi: 10.1016/j.compositesa.2018.01.018
    [19] LEE Jiseok, HONG Seokjin, YU Woongryeol, et al. The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch[J]. Composites Science and Technology,2007,67(3-4):357-366. doi: 10.1016/j.compscitech.2006.09.009
    [20] MOHAMMED U, LEKAKOU C, BADER M G. Experimental studies and analysis of the draping of woven fabrics[J]. Composites Part A,2000,31(12):1409-1420. doi: 10.1016/S1359-835X(00)00080-4
    [21] WANG J, PATON R, PAGE J R. The draping of woven fabric preforms and prepregs for production of polymer compo-site components[J]. Composites Part A,1999,30(6):757-765. doi: 10.1016/S1359-835X(98)00187-0
    [22] YU Woongryeol, HARRISON Philip, LONG Andrew. Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation[J]. Composites Part A: Applied Science and Manufacturing,2005,36(8):1079-1093. doi: 10.1016/j.compositesa.2005.01.007
    [23] IWATA Akira, INOUE Takuya, NAOUAR Naim, et al. Coupled meso-macro simulation of woven fabric local deformation during draping[J]. Composites Part A: Applied Science and Manufacturing,2019,118:267-280. doi: 10.1016/j.compositesa.2019.01.004
    [24] HARRISON P, GOMES R, CURADO-CORREIA N. Press forming a 0/90 cross-ply advanced thermoplastic compo-site using the double-dome benchmark geometry[J]. Composites Part A: Applied Science and Manufacturing,2013,54:56-69. doi: 10.1016/j.compositesa.2013.06.014
    [25] 杜洋, 高志山. 使用高精度三坐标测量仪实现透镜定中心[J]. 光学精密工程, 2015, 23(3):639-644. doi: 10.3788/OPE.20152303.0639

    DU Yang, GAO Zhishan. Lens centering using high-precision three coordinate measuring machine[J]. Optics and Precision Engineering,2015,23(3):639-644(in Chinese). doi: 10.3788/OPE.20152303.0639
    [26] CHEN S, MCGREGOR O P L, HARPER L T, et al. Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern[J]. Composites Part A: Applied Science and Manufacturing,2016,91:156-167. doi: 10.1016/j.compositesa.2016.09.016
    [27] CHEN S, MCGREGOR O P L, HARPER L T, et al. Optimisation of local in-plane constraining forces in double diaphragm forming[J]. Composite Structures,2018,201:570-581. doi: 10.1016/j.compstruct.2018.06.062
    [28] LI Xiongkui, BAI Shulin. Sheet forming of the multi-layered biaxial weft knitted fabric reinforcement. Part I: On hemispherical surfaces[J]. Composites Part A: Applied Science and Manufacturing,2009,40(6-7):766-777. doi: 10.1016/j.compositesa.2009.03.007
    [29] OUAGNE P, SOULAT D, MOOTHOO J, et al. Complex shape forming of a flax woven fabric; analysis of the tow buckling and misalignment defect[J]. Composites Part A: Applied Science and Manufacturing,2013,51:1-10. doi: 10.1016/j.compositesa.2013.03.017
    [30] ALLAOUI S, BOISSE P, CHATEL S, et al. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape[J]. Composites Part A: Applied Science and Manufacturing,2011,42(6):612-622. doi: 10.1016/j.compositesa.2011.02.001
    [31] BEL S, HAMILA N, BOISSE P, et al. Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding[J]. Composites Part A: Applied Science and Manufacturing,2012,43(12):2269-2277. doi: 10.1016/j.compositesa.2012.08.005
    [32] KHAN M A, MABROUKI T, VIDAL-SALLÉ E, et al. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark[J]. Journal of Materials Processing Technology,2010,210(2):378-388. doi: 10.1016/j.jmatprotec.2009.09.027
    [33] LOMOV S V, BOISSE P, DELUYCKER E, et al. Full-field strain measurements in textile deformability studies[J]. Composites Part A: Applied Science and Manufacturing,2008,39(8):1232-1244. doi: 10.1016/j.compositesa.2007.09.014
    [34] CABRERA N O, REYNOLDS C T, ALCOCK B, et al. Non-isothermal stamp forming of continuous tape reinforced all-polypropylene composite sheet[J]. Composites Part A: Applied Science and Manufacturing,2008,39(9):1455-1466. doi: 10.1016/j.compositesa.2008.05.014
    [35] VANCLOOSTER K, LOMOV S V, VERPOEST I. Experimental validation of forming simulations of fabric reinforced polymers using an unsymmetrical mould configuration[J]. Composites Part A: Applied Science and Manufacturing,2009,40(4):530-539. doi: 10.1016/j.compositesa.2009.02.005
    [36] SUN Guangyong, ZHANG Wenwu, WANG Zhen, et al. A novel specimen design to establish the forming limit diagram (FLD) for GFRP through stamping test[J]. Compo-sites Part A: Applied Science and Manufacturing,2020,130:105737. doi: 10.1016/j.compositesa.2019.105737
    [37] PAZMINO J, CARVELLI V, LOMOV S V. Formability of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing,2014,61:76-83. doi: 10.1016/j.compositesa.2014.02.004
    [38] QIAN Connie, WEARE Rachel, PASCO Corentin, et al. Numerical and experimental studies of multi-ply woven carbon fibre prepreg forming process[J]. 23rd International Conference on Material Forming (ESAFORM 2020),2020,47:93-99.
    [39] TREJO Eleazar A., GHAZIMORADI Mehdi, BUTCHER Clifford, et al. Assessing strain fields in unbalanced unidirectional non-crimp fabrics[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105758. doi: 10.1016/j.compositesa.2019.105758
    [40] VANLEEUW B, CARVELLI V, BARBURSKI M, et al. Quasi-unidirectional flax composite reinforcement: Deformability and complex shape forming[J]. Composites Science and Technology,2015,110:76-86. doi: 10.1016/j.compscitech.2015.01.024
    [41] PUYSTIENS Silke, Van CRAENENBROECK Maarten, Van HEMELRIJCK Danny, et al. Implementation of bending-active elements in kinematic form-active structures-Part II: Experimental verification[J]. Composite Structures,2019,213:1-13.
    [42] SALEM M M, DE LUYCKER E, FAZZINI M, et al. Experimental, analytical and numerical investigation to prevent the tow buckling defect during fabric forming[J]. Compo-sites Part A: Applied Science and Manufacturing,2019,125:105567. doi: 10.1016/j.compositesa.2019.105567
    [43] WANG Zhen, ZHANG Wenwu, LUO Quantian, et al. A novel failure criterion based upon forming limit curve for thermoplastic composites[J]. Composites Part B: Engineering,2020:108320. doi: 10.1016/j.compositesb.2020.108320
    [44] HARRISON Philip. Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh[J]. Composites Part A: Applied Science and Manufacturing,2016,81:145-157. doi: 10.1016/j.compositesa.2015.11.005
    [45] SCHIRMAIER F J, DÖRR D, HENNING F, et al. A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF)[J]. Composites Part A: Applied Science and Manufacturing,2017,102:322-335. doi: 10.1016/j.compositesa.2017.08.009
    [46] XU Xianyang, YANG Hao, NEUMANN Ingo. Monotonic loads experiment for investigation of composite structure based on terrestrial laser scanner measurement[J]. Composite Structures,2018,183:563-567. doi: 10.1016/j.compstruct.2017.07.001
    [47] 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10):1509-1516. doi: 10.11947/j.AGCS.2017.20170351

    YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1509-1516(in Chinese). doi: 10.11947/j.AGCS.2017.20170351
    [48] CHRIST Mirko, MIENE Andrea, MÖRSCHEL Ulrich. Measurement and analysis of drapeability effects of warp-knit NCF with a standardised, automated testing device[J]. Applied Composite Materials,2017,24(4):803-820. doi: 10.1007/s10443-016-9555-7
    [49] 李文羽, 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014, 35(3):158-164.

    LI Wenyu, CHENG Longdi. New progress of fabric defect detection based on computer vision and image processing[J]. Journal of Textile Research,2014,35(3):158-164(in Chinese).
    [50] ZAMBAL Sebastian, PALFINGER Werner, STÖGER Matthias, et al. Accurate fibre orientation measurement for carbon fibre surfaces[J]. Pattern Recognition,2015,48(11):3324-3332. doi: 10.1016/j.patcog.2014.11.009
    [51] ŞERBAN Alexandru. Automatic detection of fiber orientation on CF/PPS composite materials with 5-harness satin weave[J]. Fibers and Polymers,2016,17(11):1925-1933. doi: 10.1007/s12221-016-6049-z
    [52] GOMMER F, BROWN L P. BROOKS Richard. Quantification of mesoscale variability and geometrical reconstruction of a textile[J]. Journal of Composite Materials,2016,50(23):3255-3266. doi: 10.1177/0021998315617819
    [53] MALLACH Annegret, HÄRTEL Frank, HEIECK Frieder, et al. Experimental comparison of a macroscopic draping simulation for dry non-crimp fabric preforming on a complex geometry by means of optical measurement[J]. Journal of Composite Materials,2016,51(16):2363-2375.
    [54] 田松峰, 韩强, 王美俊, 等. 复合材料风电叶片静态无损检测方法研究进展[J]. 工程塑料应用, 2016, 44(06):137-141. doi: 10.3969/j.issn.1001-3539.2016.06.040

    TIAN Songfeng, HAN Qiang, WANG Meijun, et al. Research progress in static non-destructive testing methods for wind turbine blades of composite[J]. Engineering Plastics Application,2016,44(06):137-141(in Chinese). doi: 10.3969/j.issn.1001-3539.2016.06.040
    [55] 汪星明, 郭耀红, 朱庆友, 等. 复合材料无损检测研究进展[J]. 玻璃钢/复合材料, 2012(S1):261-265.

    WANG Xingming, GUO Yaohong, ZHU Qingyou, et al. Progress in research of nondestructive testing technique of composites[J]. Fiber Reinforced Plastics/Composites,2012(S1):261-265(in Chinese).
    [56] ZHANG H, ROBITAILLE F, GROSSE C U, et al. Optical excitation thermography for twill/plain weaves and stitched fabric dry carbon fibre preform inspection[J]. Composites Part A: Applied Science and Manufacturing,2018,107:282-293. doi: 10.1016/j.compositesa.2018.01.006
    [57] THOMAS S, SOMEN D. Automation in production integrated NDT using thermography[C]. 4th International Symposium on NDT in Aerospace, Germany, 2012.
    [58] THOMAS S, SOMEN D. CFRP manufacturing process chain observation by means of automated thermography[C]. 5th International Symposium on NDT in Aerospace, Singapore, 2014.
    [59] 徐帅, 程军, 杨继全, 等. 各向异性碳纤维复合材料的方向性涡流检测[J]. 振动. 测试与诊断, 2019, 39(3):631-637.

    XU Shuai, CHENG Jun, YANG Jiquan, et al. Pile defects detection based on the change of phase angle[J]. Journal of Vibration, Measurement & Diagnosis,2019,39(3):631-637(in Chinese).
    [60] 曾辉耀, 叶波, 张依仃, 等. 单向碳纤维复合材料分层缺陷垂直涡流检测有限元仿真研究[J]. 传感技术学报, 2020, 33(1):45-50.

    CENG Huiyao, YE Bo, ZHANG Yiding, et al. Finite element analysis of delamination in unidirectional carbon fiber reinforced polymer by vertical eddy current method[J]. Chinese Journal of Sensors and Actuators,2020,33(1):45-50(in Chinese).
    [61] 周德强, 尤丽华, 张秋菊, 等. 碳纤维增强复合材料脉冲涡流无损检测仿真与实验研究[J]. 传感技术学报, 2014, 27(2):277-282. doi: 10.3969/j.issn.1004-1699.2014.02.025

    ZHOU Deqiang, YOU Lihua, ZHANG Qiuju, et al. Simulation and experiments on the carbon fiber reinforced plastic using pulsed eddy current testing[J]. Chinese Journal of Sensors and Actuators,2014,27(2):277-282(in Chinese). doi: 10.3969/j.issn.1004-1699.2014.02.025
    [62] 周德强, 吴佳龙, 王俊, 等. 碳纤维增强复合材料冲击缺陷脉冲涡流无损检测仿真与试验研究[J]. 传感技术学报, 2015, 28(5):671-676. doi: 10.3969/j.issn.1004-1699.2015.05.011

    ZHOU Deqiang, WU Jialong, WANG Jun, et al. Simulation and experiment of impact damages in carbon fiber reinforced plastic using pulsed eddy current testing[J]. Chinese Journal of Sensors and Actuators,2015,28(5):671-676(in Chinese). doi: 10.3969/j.issn.1004-1699.2015.05.011
    [63] 程军, 杨继全, 裘进浩, 等. 基于涡流成像的碳纤维增强树脂基复合材料细观结构可视化[J]. 复合材料学报, 2018, 35(8):2074-2083.

    CHENG Jun, YANG Jiquan, QIU Jinhao, et al. Visualization of meso-structure of carbon fiber reinforced polymer based on eddy current imaging[J]. Acta Materiae Compo-sitae Sinica,2018,35(8):2074-2083(in Chinese).
    [64] WU Dehui, CHENG Fang, YANG Fan, et al. Non-destructive testing for carbon-fiber-reinforced plastic (CFRP) using a novel eddy current probe[J]. Composites Part B: Engineering,2019,177:107460. doi: 10.1016/j.compositesb.2019.107460
    [65] ZENG Zhiwei, TIAN Qingze, WANG Handong, et al. Testing of delamination in multidirectional carbon fiber reinforced polymer laminates using the vertical eddy current method[J]. Composite Structures,2019,208:314-321. doi: 10.1016/j.compstruct.2018.10.027
    [66] BOULOUDENINE Abderraouf, FELIACHI Mouloud, LATRECHE Mohamed El Hadi. Development of circular arrayed eddy current sensor for detecting fibers orientation and in-plane fiber waviness in unidirectional CFRP[J]. NDT & E International,2017,92:30-37.
    [67] MACHADO M A, ANTIN K N, ROSADO L S, et al. Contactless high-speed eddy current inspection of unidirectional carbon fiber reinforced polymer[J]. Composites Part B: Engineering,2019,168:226-235. doi: 10.1016/j.compositesb.2018.12.021
    [68] BARDL Georg, NOCKE Andreas, HÜBNER Matthias, et al. Analysis of the 3D draping behavior of carbon fiber non-crimp fabrics with eddy current technique[J]. Composites Part B: Engineering,2018,132:49-60. doi: 10.1016/j.compositesb.2017.08.007
    [69] KHAN A M, BARDL G, NOCKE A, et al. Quality analysis of 2D and 3D-draped carbon preforms by eddy current scanning[J]. Composites Part B: Engineering,2019,176:107110. doi: 10.1016/j.compositesb.2019.107110
    [70] NARESH K, KHAN K A, UMER R, et al. The use of X-ray computed tomography for design and process modeling of aerospace composites: A review[J]. Materials & Design,2020,190:108553.
    [71] ALI M A, UMER R, KHAN K A, et al. Application of X-ray computed tomography for the virtual permeability prediction of fiber reinforcements for liquid composite molding processes: A review[J]. Composites Science and Technology,2019,184:107828. doi: 10.1016/j.compscitech.2019.107828
    [72] EL SAID B, GREEN S, HALLETT S R. Kinematic modelling of 3D woven fabric deformation for structural scale features[J]. Composites Part A: Applied Science and Manufacturing,2014,57:95-107. doi: 10.1016/j.compositesa.2013.11.006
    [73] LIU Chong, XIE Junbo, SUN Ying, et al. Micro-scale modeling of textile composites based on the virtual fiber embedded models[J]. Composite Structures,2019,230:111552. doi: 10.1016/j.compstruct.2019.111552
    [74] JIAO Wei, CHEN Li, XIE Junbo, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures,2020,252:112756. doi: 10.1016/j.compstruct.2020.112756
    [75] ZHANG Yifan, GUO Qiwei, CHEN Xiaoming, et al. Effect of apertures on tensile property of warp-reinforced 2.5D woven composites notched plates[J]. Composite Structures,2020,252:112693. doi: 10.1016/j.compstruct.2020.112693
    [76] 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J/OL].复合材料学报:1-15[2021-03-03]. https://doi.org/10.13801/j.cnki.fhclxb.20200722.003.

    HE Yemao, JIAO Ya'nan, ZHOU Qing, et al. Ballistic performance of ultrahigh molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism[J/OL]. Acta Materiae Compositae Sinica, 2020: 1-15[2021-03-03]. https://doi.org/10.13801/j.cnki.fhclxb.20200722.003(in Chinese).
    [77] KUNZE Eckart, SCHWARZ Benjamin, WEBER Tony, et al. Forming analysis of internal plies of multi-layer unidirectional textile preforms using projectional radiography[C]. 23rd International Conference on Material Forming, Germany, 2020.
    [78] 韩振宇, 梅海洋, 付云忠, 等. 三维编织预成型体的织造及三维编织复合材料细观结构研究进展[J]. 材料工程, 2018, 46(11):25-36. doi: 10.11868/j.issn.1001-4381.2017.000682

    HAN Zhenyu, MEI Haiyang, FU Yunzhong, et al. Research progress on preform forming and microstructure of 3D braided composites[J]. Journal of Materials Engineering,2018,46(11):25-36(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.000682
    [79] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72.

    CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of 3D woven composites[J]. Journal of Materials Engineering,2020,48(8):62-72(in Chinese).
    [80] BILISIK Kadir. Multiaxis three-dimensional weaving for composites: A review[J]. Textile Research Journal,2012,82(7):725-743. doi: 10.1177/0040517511435013
    [81] BILISIK Kadir. Three-dimensional braiding for compo-sites: A review[J]. Textile Research Journal,2012,83(13):1414-1436.
    [82] GEREKE Thomas, CHERIF Chokri. A review of numerical models for 3D woven composite reinforcements[J]. Composite Structures,2019,209:60-66. doi: 10.1016/j.compstruct.2018.10.085
    [83] LI Mengru, WANG Peng, BOUSSU François, et al. A review on the mechanical performance of three-dimensional warp interlock woven fabrics as reinforcement in compo-sites[J]. Journal of Industrial Textiles,2020:2025532350.
  • 加载中
图(10)
计量
  • 文章访问数:  1452
  • HTML全文浏览量:  596
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 录用日期:  2020-10-18
  • 网络出版日期:  2020-10-21
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回