留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐基柔性复合热电材料研究进展

刘祎 张荔

刘祎, 张荔. 聚3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐基柔性复合热电材料研究进展[J]. 复合材料学报, 2021, 38(2): 287-297. doi: 10.13801/j.cnki.fhclxb.20201016.001
引用本文: 刘祎, 张荔. 聚3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐基柔性复合热电材料研究进展[J]. 复合材料学报, 2021, 38(2): 287-297. doi: 10.13801/j.cnki.fhclxb.20201016.001
LIU Yi, ZHANG Li. Recent progress on poly(3, 4-ethyl-enedioxythiophene): polystyrenesulfonate-based flexible composite thermoelectric materials[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 287-297. doi: 10.13801/j.cnki.fhclxb.20201016.001
Citation: LIU Yi, ZHANG Li. Recent progress on poly(3, 4-ethyl-enedioxythiophene): polystyrenesulfonate-based flexible composite thermoelectric materials[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 287-297. doi: 10.13801/j.cnki.fhclxb.20201016.001

聚3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐基柔性复合热电材料研究进展

doi: 10.13801/j.cnki.fhclxb.20201016.001
基金项目: 国家自然科学青年基金(51802181);陕西省自然科学基金(2019JQ-771);陕西科技大学基金(2017GBJ-03)
详细信息
    通讯作者:

    张荔,博士,副教授,硕士生导师,研究方向为热电材料 E-mail:zhangli@sust.edu.cn

  • 中图分类号: TB333;TB34

Recent progress on poly(3, 4-ethyl-enedioxythiophene): polystyrenesulfonate-based flexible composite thermoelectric materials

  • 摘要: 热电材料可以实现热能与电能的直接转化,是一种安全环保的新型能源材料。近年来,随着可穿戴电子设备的发展,柔性热电材料成为研究人员关注的焦点。传统无机热电材料具有优异的热电性能,但由于自身固有的脆性,限制了在柔性领域的发展。聚3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐(PEDOT: PSS)具有高电导率、低热导率和良好的柔性,在柔性热电领域具有巨大的潜力。当选择合适的无机填料与PEDOT: PSS进行复合,可以得到优异的热电性能和良好的力学性能。本文综述了PEDOT: PSS基纳米复合薄膜的最新进展,并详细介绍了提高PEDOT: PSS基纳米复合薄膜热电性能的有效方法。最后,本文总结了实现高性能PEDOT: PSS基柔性热电材料的途径及面对的挑战。

     

  • 图  1  聚 3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐(PEDOT: PSS)基柔性热电材料与不同类型的无机材料复合

    Figure  1.  Poly(3, 4-ethyl-enedioxythiophene): polystyrenesulfonate (PEDOT: PSS)-based flexible thermoelectric material composited with different types of inorganic materials

    CNTs—Carbon nanotubes

    图  2  绝缘体-管道热电装置 (a)、质子辐照的Bi2Te3 (b)、极性溶剂气相退火(PSVA)对势垒能的调控 (c)[46, 50-51]

    Figure  2.  Insulator-pipe line TE device (a), proton irradiation Bi2Te3 (b), regulation of barrier energy by polar solvent vapor annealing (PSVA) (c)[46, 50-51]

    EVac—Conduction band; EF—Fermi energy level

    图  3  PC-CuxSey纳米线的制备 (a)、Cu:Se比对热电参数的影响 (b)、PEDOT:PSS/Cu2Se制备的热电设备在手腕处的输出电压 (c)、有序化PEDOT:PSS/LDH复合膜界面处的能量过滤效应 (d)[58, 60]

    Figure  3.  Preparation of PC-CuxSey nanowire (a), influence of Cu:Se ratio on thermoelectric parameters (b), output voltage of the thermoelectric device prepared by PEDOT:PSS/Cu2Se at the wrist (c), energy filtering effect at the interface of ordered PEDOT:PSS/LDH composite film (d)[58, 60]

    VB—Valence band; ∆E—Energy level difference between PEDOT:PSS and LDH—Layered double hydroxide

    图  4  CNT/PP复合膜的制备工艺 (a)、DMSO处理后的结构转变 (b)、柔性膜的力学性能测试 (c)[64, 66-67]

    Figure  4.  Preparation process of CNT/PP composite film (a), structural transformation after DMSO treatment (b), mechanical performance test of flexible film (c)[64, 66-67]

    PP—Polypropylene; DMSO—Dimethyl sulfoxide

    表  1  不同体系PEDOT:PSS基复合材料的热电性能

    Table  1.   Thermoelectric properties of PEDOT:PSS based composites in different systems

    Material T/KS/(μV·K−1)σ/(S·cm−1)PF/(μW·cm−1·K−2)ZTRef.
    Bi-Te Alloy Bi0.5Sb1.5Te3/PEDOT:PSS 300 49 1 285 308 0.048 [46]
    Bi2Te3/PEDOT:PSS 300 49 1 350 323 0.484 [49]
    Bi2Te3NWs/PEDOT:PSS 300 47 1 026 226 0.32 [50]
    Cu-Bi0.5Sb1.5Te3/PEDOT:PSS 300 37.1 2 270 312 - [52]
    2D Layer SnSe0.97Te0.03/PEDOT:PSS 300 60 360 130.3 - [57]
    PEDOT:PSS/Cu2Se 300 50.8 1 047.1 270.3 0.3 [58]
    PEDOT:PSS/MXene 300 48.6 656 155 - [59]
    Carbon SWCNT/PEDOT:PSS 340 38 745.4 108.7 - [64]
    GR/PEDOT:PSS 380 17.3 976.4 29.3 0.12 [65]
    SWNT-PEDOT:PSS-D 300 55.6 1 701 526 0.39 [66]
    CNT-PEDOT 300 48 679 157 - [67]
    OxidePEDOT:PSS/Ca3Co4O9 300 18.1 73 2.4 - [70]
    Ga-ZnO(GZO)/PEDOT:PSS 362 19.5 1 015 38.4 - [71]
    Ternary PEDOT/Ag2Se/CuAgS 300 120 1 080 1 603 0.6-1.05 [72]
    (C-CNT)/PEDOT:PSS 300 82.9 730 504.8 - [74]
    SWNT/PEDOT:PSS/PEDOT NW 300 37 2 570 352 - [75]
    Notes: T—Temperature; S—Seebeck effect; σ—Electrical conductivity; PF—Power factor; ZT—Figure of merit; C-CNT—Carbon coated nanotubes; SWCNT—Single-walled nanotubes; NWs—Nanowires.
    下载: 导出CSV
  • [1] LI B, HUANG K, YAN Y, et al. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles[J]. Applied Energy,2017,205:868-879. doi: 10.1016/j.apenergy.2017.08.092
    [2] SHEN Z G, TIAN L L, LIU X. Automotive exhaust thermoelectric generators: Current status, challenges and future prospects[J]. Energy Conversion and Management,2019,195:1138-1173. doi: 10.1016/j.enconman.2019.05.087
    [3] SUNAWAR A, GARNIWA I, HUDAYA C. The design of alternative electric energy utilizes solar heat in the vehicle cabin with thermoelectric module[C]//2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS). Bali Indonesia.2017:131-134.
    [4] YU C G, ZHENG S J, DENG Y D, et al. Performance analysis of the automotive TEG with respect to the geometry of the modules[J]. Journal of Electronic Materials,2017,46(5):2886-2893. doi: 10.1007/s11664-016-5018-z
    [5] ADAM A M, ADAM S, PETRESCU I M. An insight in the thermoelectric devices and applications based on the seebeck and Peltier effects[J]. Metalurgia International,2013,18:77-80.
    [6] XU S, HONG M, SHI X L, et al. High-performance PEDOT: PSS flexible thermoelectric materials and their devices by triple post-treatments[J]. Chemistry of Matrials,2019,31(14):5238-5244. doi: 10.1021/acs.chemmater.9b01500
    [7] HONG M, LYU W Y, WANG Y, et al. Establishing the golden range of seebeck coefficient for maximizing thermoelectric performance[J]. Journal of the American Chemical Society,2020,142(23):10568. doi: 10.1021/jacs.0c05548
    [8] JIN M, SHI X L, FENG T L, et al. Super large Sn1-xSe single crystals with excellent thermoelectric performance[J]. ACS Applied Materials & Interfaces,2019,11(8):8051-8059.
    [9] WANG Y, YANG L, SHI X L, et al. Flexible thermoelectric materials and generators: Challenges and innovations[J]. Advanced Materials,2019,31(29):1807916. doi: 10.1002/adma.201807916
    [10] YUAN J, ZHU R. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator[J]. Applied Energy,2020,271:115250. doi: 10.1016/j.apenergy.2020.115250
    [11] YUAN J, ZHU R, LI G. Self-powered electronic skin with multisensory functions based on thermoelectric conversion[J]. Advanced Materials Technologies,2020:2000419. doi: 10.1002/admt.202000419
    [12] ZHENG Y, ZHANG Q, JIN W, et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics[J]. Journal of Materials Chemistry A,2020,8(6):2984-2994. doi: 10.1039/C9TA12494B
    [13] KIM D, JU D, CHO K. Heat-sink-free flexible organic thermoelectric generator vertically operating with chevron structure[J]. Advanced Materials Technologies,2018,3(4):1700335. doi: 10.1002/admt.201700335
    [14] LI Z, SUN H, HSIAO C L, et al. A free-standing high-output power density thermoelectric device based on structure-ordered PEDOT: PSS[J]. Advanced Electronic Materials,2018,4(2):1700496. doi: 10.1002/aelm.201700496
    [15] WANG Y, LIU W D, SHI X L, et al. Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction[J]. Chemical Engineering Journal,2020,391:123513. doi: 10.1016/j.cej.2019.123513
    [16] WANG C H, HSIEH H C, SUN Z W, et al. Interfacial stability in Bi2Te3 thermoelectric joints[J]. ACS Applied Materials & Interfaces,2020,12(24):27001-27009.
    [17] NEWBROOK D W, RICHARDS S P, GREENACRE V K, et al. Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generators[J]. ACS Applied Energy Materials,2020,3(6):5840-5846. doi: 10.1021/acsaem.0c00766
    [18] WU Z, CHEN X, MU E, et al. Lattice strain enhances thermoelectric properties in Sb2Te3/Te heterostructure[J]. Advanced Electronic Materials,2020,6(1):1900735. doi: 10.1002/aelm.201900735
    [19] CHEN Z, JIAN Z, LI W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence[J]. Advanced Materials,2017,29(23):1606768. doi: 10.1002/adma.201606768
    [20] DECOSTER M E, CHEN X, ZHANG K, et al. Thermal conductivity and phonon scattering processes of ALD grown PbTe-PbSe thermoelectric thin films[J]. Advanced Functional Materials,2019,29(46):1904073. doi: 10.1002/adfm.201904073
    [21] CHEN Y, ZHAO Y, LIANG Z. Solution processed organic thermoelectrics: towards flexible thermoelectric modules[J]. Energy& Environmental Science,2015,8(2):401-422.
    [22] ZHANG Q, SUN Y, XU W, et al. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently[J]. Advanced Materials,2014,26(40):6829-6851. doi: 10.1002/adma.201305371
    [23] BHARTI M, SINGH A, SAMANTA S, et al. Conductive polymers for thermoelectric power generation[J]. Progress in Materials Science,2018,93:270-310. doi: 10.1016/j.pmatsci.2017.09.004
    [24] WANG H, YU C. Organic thermoelectrics: Materials preparation, performance optimization, and device integration[J]. Joule,2019,3(1):53-80. doi: 10.1016/j.joule.2018.10.012
    [25] GAO J, WANG L, GUO Z, et al. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications[J]. Chemical Engineering Journal,2020,381:122778. doi: 10.1016/j.cej.2019.122778
    [26] WANG Z, ZHU M, PEI Z, et al. Polymers for supercarpacitors: Boosting the development of the flexible and wearable energy storage[J]. Materials Science & Engineering R-Reports,2020,139:100520.
    [27] ZARE E N, MAKVANDI P, ASHTARI B, et al. Progress in conductive polyaniline-based nanocomposites for biomedical applications: A review[J]. Journal of Medicinal Chemistry,2020,63(1):1-22. doi: 10.1021/acs.jmedchem.9b00803
    [28] YADAV R, TIRUMALI M, WANG X, et al. Polymer compo-site for antistatic application in aerospacee[J]. Defence Technology,2020,16(1):107-118. doi: 10.1016/j.dt.2019.04.008
    [29] WU X, HAN B, ZHANG H B, et al. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding[J]. Chemical Engineering Journal,2020,381:122622. doi: 10.1016/j.cej.2019.122622
    [30] PARK T, PARK C, KIM B, et al. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips[J]. Energy & Environmental Science,2013,6(3):788-792.
    [31] WEI Q, MUKAIDA M, KIRIHARA K, et al. Recent progress on PEDOT-based thermoelectric materials[J]. Materials,2015,8(2):732-750. doi: 10.3390/ma8020732
    [32] LIANG L, CHEN G, GUO C Y. Polypyrrole nanostructures and their thermoelectric performance[J]. Materials Chemistry Frontiers,2017,1(2):380-386. doi: 10.1039/C6QM00061D
    [33] WU J, SUN Y, PEI W B, et al. Polypyrrole nanotube film for flexible thermoelectric application[J]. Synthetic Metals,2014,196:173-177. doi: 10.1016/j.synthmet.2014.08.001
    [34] HYNYNEN J, KIEFER D, MULLER C. Influence of crystallinity on the thermoelectric power factor of P3HT vapour-doped with F4TCNQ[J]. RSC Advances,2018,8(3):1593-1599. doi: 10.1039/C7RA11912G
    [35] ZHANG Q, SUN Y, XU W, et al. Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions[J]. Energy & Environmental Science,2012,5(11):9639-9644.
    [36] BASESCU N, LIU Z X, MOSES D, et al. High electrical conductivity in doped polyacetylene[J]. Nature,1987,327(6121):403-405. doi: 10.1038/327403a0
    [37] PARK Y, YOON C, NA B, et al. Metallic properties of transition metal halides doped polyacetylene: The soliton liquid state[J]. Synthetic Metals,1991,41(1-2):27-32. doi: 10.1016/0379-6779(91)90989-I
    [38] CHOY C. Thermal conductivity of polymers[J]. Polymer,1977,18(10):984-1004. doi: 10.1016/0032-3861(77)90002-7
    [39] WANG Y. Research progress on a novel conductive polymer poly (3, 4-ethylenedioxythiophene) (PEDOT)[J]. Journal of Physics Conference,2009,152:012023. doi: 10.1088/1742-6596/152/1/012023
    [40] SUN K, ZHANG S, LI P, et al. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices[J]. Journal of Materials Science-Materials in Electronics,2015,26(7):4438-4462. doi: 10.1007/s10854-015-2895-5
    [41] SHI H, LIU C, JIANG Q, et al. Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review[J]. Advanced Electronic Materials,2015,1(4):1500017. doi: 10.1002/aelm.201500017
    [42] LAY M, PELACHe M A, PELLICER N, et al. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT: PSS/polypyrrole for energy storage devices[J]. Carbohydr Polym,2017,165:86-95. doi: 10.1016/j.carbpol.2017.02.043
    [43] FAN Z, OUYANG J. Thermoelectric properties of PEDOT: PSS[J]. Advanced Electronic Materials,2019,5(11):1800769. doi: 10.1002/aelm.201800769
    [44] PANIGRAHY S, KANDASUBRAMANIAN B. Polymeric thermoelectric PEDOT: PSS & composites: Synthesis, progress, and applications[J]. European Polymer Journal,2020,132:109726. doi: 10.1016/j.eurpolymj.2020.109726
    [45] SONG H, MENG Q, LU Y, et al. Progress on PEDOT: PSS/nanocrystal thermoelectric composites[J]. Advanced Electronic Materials,2019,5(11):1800822. doi: 10.1002/aelm.201800822
    [46] THONGKHAM W, LERTSATITTHANAKORN C, JIRAMITMONGKON K, et al. Self-assembled three-dimensional Bi2Te3 nanowire-PEDOT: PSS hybrid nanofilm network for ubiquitous thermoelectrics[J]. ACS Applied Materials & Interfaces,2019,11(6):6624-6633.
    [47] BHARTI M, SINGH A, SAINI G, et al. Boosting thermoelectric power factor of free-standing poly(3, 4ethylenedioxythiophene): polystyrenesulphonate films by incorporation of bismuth antimony telluride nanostructures[J]. Journal of Power Sources,2019,435:226758. doi: 10.1016/j.jpowsour.2019.226758
    [48] DU Y, LIU X, XU J, et al. Flexible Bi-Te-based alloy nanosheet/PEDOT: PSS thermoelectric power generatrs[J]. Materials Chemistry Frontiers,2019,3(7):1328-1334. doi: 10.1039/C9QM00087A
    [49] LIM J Y, CHO S, KIM H, et al. Optimum thermoelectric performance of bismuth-antimony-telluride alloy/PEDOT: PSS nanocomposites prepared by an innovative redox process[J]. ACS Applied Energy Materials,2019,2(11):8219-8228. doi: 10.1021/acsaem.9b01702
    [50] GOO G, ANOOP G, UNITHRATTIL S, et al. Proton irradiation effects on the thermoelectric properties of flexible Bi2Te3/PEDOT: PSS composite films[J]. Advanced Electronic Materials,2019,5(4):1800786. doi: 10.1002/aelm.201800786
    [51] KIM W S, ANOOP G, JEONG I S, et al. Feasible tuning of barrier energy in PEDOT: PSS/Bi2Te3 nanowires-based thermoelectric nanocomposite thin films through polar solvent vapor annealing[J]. Nano Energy,2020,67:104207. doi: 10.1016/j.nanoen.2019.104207
    [52] WANG Y, HONG M, LIU W D, et al. Bi0.5Sb1.5Te3/PEDOT: PSS-based flexible thermoelectric film and device[J]. Chemical Engineering Journal,2020,397:125360. doi: 10.1016/j.cej.2020.125360
    [53] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science,2018,360(6390):778-782. doi: 10.1126/science.aaq1479
    [54] JU H, PARK D, KIM J. Effect of polymer nanolayers on tin-chalcogenide nanosheet/conductive polymer flexible composite films and their enhanced thermoelectric performance[J]. Nanoscale,2019,11(17):8502-8509. doi: 10.1039/C9NR01345H
    [55] JU H, PARK D, KIM J. Thermoelectric enhancement in multilayer thin-films of tin chalcogenide nanosheets/conductive polymers[J]. Nanoscale,2019,11(34):16114-16121. doi: 10.1039/C9NR04712C
    [56] JU H, PARK D, KIM K, et al. Chemical exfoliation of SnSe1–xTex nanosheets with conductive PEDOT: PSS for flexible thermoelectric composite films[J]. Journal of Alloys and Compounds,2019,792:638-643. doi: 10.1016/j.jallcom.2019.04.086
    [57] JU H, PARK D, KIM K, et al. Exfoliated Sn-Se-Te based nanosheets and their flexible thermoelectric composites with poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) fabricated by solution processing[J]. Organic Electronics,2019,71:131-135. doi: 10.1016/j.orgel.2019.05.017
    [58] LU Y, DING Y, QIU Y, et al. Good performance and flexible PEDOT: PSS/Cu2Se nanowire thermoelectric composite films[J]. ACS Applied Materials & Interfaces,2019,11(13):12819-12829.
    [59] GUAN X, FENG W, WANG X, et al. Significant enhancement in the seebeck coefficient and power factor of p-type poly(3, 4-ethylenedioxy-thiophene): poly (styreneesulfonate) through the incorporation of n-type MXene[J]. ACS Applied Materials & Interfaces,2020,12(11):13013-13020.
    [60] XU Q, XU S M, TIAN R, et al. Significantly enhanced thermoelectric properties of organic-inorganic hybrids with a periodically ordered structure[J]. ACS Applied Materials & Interfaces,2020,12(11):13371-13377.
    [61] SHENG M, WANGY, LIU C, et al. Significantly enhanced thermoelectric performance in SWCNT films via carrier tuning for high power generation[J]. Carbon,2020,158:802-807. doi: 10.1016/j.carbon.2019.11.057
    [62] NOVAK T G, KIM J, KIM J, et al. Complementary n-type and p-type graphene films for high power factor thermoelectric generators[J]. Advanced Functional Materials,2020,30(28):2001760. doi: 10.1002/adfm.202001760
    [63] CHUNG S H, KIM D H, KIM H, et al. Thermoelectric properties of PEDOT: PSS and acid-treated SWCNT composite films[J]. Materials Today Communications,2020,23:100867. doi: 10.1016/j.mtcomm.2019.100867
    [64] DU Y, SHI Y, MENG Q, et al. Preparation and thermoelectric properties of flexible SWCNT/PEDOT: PSS composite film[J]. Synthetic Metals,2020,261:116318. doi: 10.1016/j.synthmet.2020.116318
    [65] LIU X, DU Y, MENG Q, et al. Flexible thermoelectric power generators fabricated using graphene/PEDOT: PSS nanocomposite films[J]. Journal of Materials Science: Materials in Electronics,2019,30(23):20369-20375. doi: 10.1007/s10854-019-02280-2
    [66] LIU S, LI H, HE C. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT: PSS nano-composites[J]. Carbon,2019,149:25-32. doi: 10.1016/j.carbon.2019.04.007
    [67] WANG L, ZHANG J, GUO Y, et al. Fabrication of core-shell structured poly(3, 4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors[J]. Carbon,2019,148:290-296. doi: 10.1016/j.carbon.2019.03.088
    [68] ZHANG Z, CHEN G, WANG H, et al. Template-directed in situ polymerization preparation of nanocomposites of PEDOT: PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property[J]. Chemistry-An Asian Journal,2015,10(1):149-153. doi: 10.1002/asia.201403100
    [69] KIM J H, KANG T J. Composite films of poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate incorporated with carbon nanotube sheet for improved power factor in thermoelectric conversion[J]. Materials Today Communications,2020,25:101568. doi: 10.1016/j.mtcomm.2020.101568
    [70] LIU C, JIANG F, HUANG M, et al. Free-standing PEDOT-PSS/Ca3Co4O9 composite films as novel thermoelectric materials[J]. Journal of Electronic Materials,2010,40(5):948-952.
    [71] HATA S, TAGUCHI K, OSHIMA K, et al. Preparation of Ga-ZnO nanoparticles using microwave and ultrasonic irradiation, and the application of poly (3, 4-ethylenedioxythiophene)-poly (styrenesul-fonate) hybrid thermoelectric films[J]. Chemistry Select,2019,4(22):6800-6804. doi: 10.1002/slct.201901565
    [72] LU Y, QIU Y, CAI K, et al. Ultrahigh performance PEDOT/Ag2Se/CuAgSe composite film for wearable thermoelectric power generators[J]. Materials Today Physics,2020,14:100223. doi: 10.1016/j.mtphys.2020.100223
    [73] LIANG L, FAN J, WANG M, et al. Ternary thermoelectric composites of polypyrrole/PEDOT: PSS/carbon nanotube with unique layered structure prepared by one-dimensional polymer nanostructure as template[J]. Composites Science and Technology,2020,187:107948. doi: 10.1016/j.compscitech.2019.107948
    [74] LI D, LUO C, CHEN Y, et al. High performance polymer thermoelectric composite achieved by carbon-coated carbon nanotubes network[J]. ACS Applied Energy Materials,2019,2(4):2427-2434. doi: 10.1021/acsaem.9b00334
    [75] LIU S, KONG J, CHEN H, et al. Interfacial energy barrier tuning for enhanced thermoelectric performance of PEDOT nanowire/SWNT/PEDOT: PSS ternary composites[J]. ACS Applied Energy Materials,2019,2(12):8843-8850. doi: 10.1021/acsaem.9b01834
    [76] MENG Q, CAI K, DU Y, et al. Preparation and thermoelectric properties of SWCNT/PEDOT: PSS coated tellurium nanorod composite films[J]. Journal of Alloys and Compounds,2019,778:163-169. doi: 10.1016/j.jallcom.2018.10.381
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1725
  • HTML全文浏览量:  600
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 录用日期:  2020-10-10
  • 网络出版日期:  2020-10-16
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回