留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WS2/g-C3N4异质结光催化分解水制氢性能及机制

孟培媛 郭明媛 乔勋

孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2): 591-600. doi: 10.13801/j.cnki.fhclxb.20201011.001
引用本文: 孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2): 591-600. doi: 10.13801/j.cnki.fhclxb.20201011.001
MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 591-600. doi: 10.13801/j.cnki.fhclxb.20201011.001
Citation: MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 591-600. doi: 10.13801/j.cnki.fhclxb.20201011.001

WS2/g-C3N4异质结光催化分解水制氢性能及机制

doi: 10.13801/j.cnki.fhclxb.20201011.001
基金项目: 陕西省教育厅专项科学研究计划(17JK1156);西京学院特区人才专项基金(XJ17T09)
详细信息
    通讯作者:

    孟培媛,硕士,助教,研究方向为新型纳米材料研究、海洋装备防护、油气田井下设备  E-mail:lyg041@163.com

  • 中图分类号: TK91;O644.1

H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction

  • 摘要: 通过溶剂蒸发和二次高温煅烧石墨相碳化氮(g-C3N4)纳米片和WS2纳米片混合物构建WS2/g-C3N4异质结,该异质结保留g-C3N4和WS2主体结构的同时,在界面处形成化学键,确保该异质结的化学稳定性和热稳定性。光催化分解水制氢实验表明,WS2纳米片含量为3wt%时光催化制氢速率高达68.62 μmol/h,分别是g-C3N4纳米片和WS2纳米片的2.53倍和15.29倍,表明异质结的构建可大幅提升g-C3N4的光催化性能,循环实验表明该异质结在5次循环实验后光催化性能没有明显下降,表明该异质结的稳定性较好。光电性能测试表明异质结的构建不仅提高激发电子的转移效率,同时抑制激发电子空穴的复合率,大幅提升激发电子的利用效率,致使光催化分解水制氢速率较g-C3N4纳米片和WS2纳米片大幅提升。

     

  • 图  1  光催化分解水制氢装置的示意图(a)和实物图(b)

    Figure  1.  Equipment of H2 evolution by water splitting by sketch diagram (a) and picture (b) of real products

    图  2  g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的XRD图谱

    Figure  2.  XRD patterns of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  3  g-C3N4纳米片(a)、WS2纳米片(b)和3-WS2/g-C3N4异质结(c)的SEM图像,g-C3N4纳米片(d)、WS2纳米片(e)和3-WS2/g-C3N4异质结(f)的TEM图像,以及g-C3N4纳米片(g)、WS2纳米片(h)和3-WS2/g-C3N4异质结(i)的HRTEM图像

    Figure  3.  SEM images of g-C3N4 nanosheets (a), WS2 nanosheets (b), 3-WS2/g-C3N4 heterojunction (c); TEM images of g-C3N4 nanosheets (d), WS2 nanosheets (e), 3-WS2/g-C3N4 heterojunction (f); HRTEM images of g-C3N4 nanosheets (g), WS2 nanosheets (h), 3-WS2/g-C3N4 heterojunction (i)

    图  4  g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的紫外-可见吸收光图谱

    Figure  4.  UV-vis spectra of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  5  g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的红外光谱图

    Figure  5.  FTIR spectra of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  6  g-C3N4和3-WS2/g-C3N4异质结XPS全图谱(a)、C1s图谱(b)、N1s图谱(c)和O1s图谱(d)

    Figure  6.  XPS spectra of survey spectra (a), C1s spectra (b), N1s spectra (c) and O1s spectra (d) in g-C3N4 and 3-WS2/g-C3N4 heterojunction

    图  7  g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的N2吸附-脱附平衡曲线

    Figure  7.  N2 adsorption-desorption curves of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  8  g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的光解水制氢曲线(a);不同含量WS2纳米片异质结光催化分解水制氢曲线(b)

    Figure  8.  H2 evolution rate of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction (a) ; H2 evolution rate of heterojunction with different amount of WS2 nanosheets (b)

    图  9  3-WS2/g-C3N4异质结光解水制氢稳定性

    Figure  9.  Stability of 3-WS2/g-C3N4 heterojunction

    图  10  g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的光致发光光图谱

    Figure  10.  PL spectra of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  11  g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的光电流强度

    Figure  11.  Photocurrent intensity of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  12  3-WS2/g-C3N4异质结活性因子捕获实验

    Figure  12.  Active species trapping experiments of 3-WS2/g-C3N4 heterojunction

    IPA—Isopropanol; TEOA—Triethanolamine; BQ— Benzoquinone

    图  13  WS2/g-C3N4异质结光催化机制

    Figure  13.  Enhanced mechanism of 3-WS2/g-C3N4 heterojunction on photocatalysis

    表  1  不同WS2/石墨相碳化氮(g-C3N4)g-C3N4异质结样品中g-C3N4和WS2的质量

    Table  1.   Mass of graphite phase nitrogen carbide(g-C3N4) and WS2 in different WS2/g-C3N4 heterojunction samples

    Sample1-WS2/g-C3N42-WS2/g-C3N43-WS2/g-C3N44-WS2/g-C3N45-WS2/g-C3N4
    WS2/g 0.0250.0500.0750.1000.125
    g-C3N4/g 11111
    下载: 导出CSV
  • [1] 天工. 我国能源领域对外开放不断扩大[J]. 天然气工业, 2018, 295(5):124.

    TIAN Gong. Energy field of China is opening wider to the outside world[J]. Natural Gas Industry,2018,295(5):124(in Chinese).
    [2] 马园媛, 赵岐. 煤气化技术的现状及发展趋势[J]. 化工管理, 2018, 487(21):202. doi: 10.3969/j.issn.1008-4800.2018.21.156

    MA Yuanyuan, ZHAO Qi. Status quo and develop ment trend of coal gasification technology[J]. Chemical Enterprise Management,2018,487(21):202(in Chinese). doi: 10.3969/j.issn.1008-4800.2018.21.156
    [3] 毛晨旭. 超临界水煤气化工艺动力循环设计与性能分析[D]. 大连: 大连理工大学, 2018.

    MAO Chenxu. Design and performance analysis of power cycle with process of coal gasification in supercritical water[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [4] BOUVIER-MULLER J, ALLAIN C, ENJALBERT F, et al. Somatic cell count-based selection reduces susceptibility to energy shortage during early lactation in a sheep model[J]. Journal of Dairy Science,2018,101(3):2248-2259. doi: 10.3168/jds.2017-13479
    [5] WANG Q, LU B, DOU X, et al. Distribution network voltage control based on coordinated optimization of PV and air-conditioning[J]. International Journal of Photoenergy,2018,2018:1-7.
    [6] PAUL K K, SREEKANTH N, BIROJU R K, et al. Solar light driven photoelectrocatalytic hydrogen evolution and dye degradation by metal-free few-layer MoS2 nanoflower/TiO2 (B) nanobelts heterostructure[J]. Solar Energy Materials and Solar Cells,2018,185:364-374. doi: 10.1016/j.solmat.2018.05.056
    [7] CROMWELL E F, STOLOW A, VRAKKING M J J, et al. Dynamics of ethylene photodissociation from rovibrational and translational energy distributions of H2 products[J]. Journal of Chemical Physics,1992,97(6):4029-4040. doi: 10.1063/1.462942
    [8] BRUNGER M J, BUCKMAN S J, NEWMAN D S, et al. Elastic scattering and rovibrational excitation of H2 by low-energy electrons[J]. Journal of Physics B,1991,24(6):1435-1448. doi: 10.1088/0953-4075/24/6/027
    [9] KESSON S E, SMITH I E. TiO2 content and the shoshonite and alkaline associations[J]. Nature,1972,236(68):110-111.
    [10] WILLIAMS G, SEGER B, KAMAT P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. Acs Nano,2008,2(7):1487. doi: 10.1021/nn800251f
    [11] GILJA V, KATANI Z, KREHULA L K, et al. Efficiency of TiO2 catalyst supported by modified waste fly ash during photodegradation of RR45 dye[J]. Science & Engineering of Composite Materials,2019,26(1):292-300.
    [12] LI H, NA L, MING W, et al. Synthesis of novel and stable g-C3N4-Bi2WO6hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation[J]. Royal Society Open Science,2018,5(3):171419. doi: 10.1098/rsos.171419
    [13] LI C, SUN Z, ZHANG W, et al. Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus[J]. Applied Catalysis B: Environmental,2018,220:272-282. doi: 10.1016/j.apcatb.2017.08.044
    [14] ZHANG S, GAO H, HUANG Y, et al. Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation[J]. Environmental Science: Nano,2018,5:1179-1190. doi: 10.1039/C8EN00124C
    [15] MA Y, LIU E, HU X, et al. A simple process to prepare few-layer g-C3N4 nanosheets with enhanced photocatalytic activities[J]. Applied Surface Science,2015,358:246-251. doi: 10.1016/j.apsusc.2015.08.174
    [16] WU Y N, MIAO H, FAN S, et al. Determination of 23 β2-agonists and 5 β-blockers in animal muscle by high performance liquid chromatography-linear ion trap mass spectrometry[J]. Science China Chemistry,2010,53(4):832-840. doi: 10.1007/s11426-010-0071-6
    [17] JIA J, DU X, LIU E, et al. Highly efficient and stable Au/Bi2MoO6/Bi2WO6 heterostructure with enhanced photocatalytic activity for NO gas removal under visible light irradiation[J]. Journal of Physics D: Applied Physics,2017,50(14):145103. doi: 10.1088/1361-6463/aa60e3
    [18] CHU J, HAN X, YU Z, et al. Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures[J]. Acs Applied Materials & Interfaces,2018,10(24):20404-20411.
    [19] WANG X, MAEDA, KAZUHIKO, et al. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society,2009,131(5):1680-1681. doi: 10.1021/ja809307s
    [20] WANG X, CHEN X, THOMAS A, et al. Metal-containing carbon nitride compounds: A new functional organic-metal hybrid material[J]. Advanced Materials,2010,21(16):1609-1612.
    [21] DONG G, HO W, WANG C. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies[J]. Journal of Materials Chemistry A,2015,3(46):23435-23441. doi: 10.1039/C5TA06540B
    [22] LOU J, DONG G, ZHU Y, et al. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4[J]. Applied Catalysis B: Environmental,2017,214(10):46-56.
    [23] JIAGUO Y, JIMMY C, MITCH K, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis,2003,217(1):69-78.
    [24] XIANG Q, YU J, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. Journal of Physical Chemistry C,2011,115(15):7355-7363. doi: 10.1021/jp200953k
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1892
  • HTML全文浏览量:  518
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 录用日期:  2020-09-27
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回