留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟

张辰 饶云飞 李倩倩 李炜

张辰, 饶云飞, 李倩倩, 等. 碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟[J]. 复合材料学报, 2021, 38(1): 165-176. doi: 10.13801/j.cnki.fhclxb.20200922.003
引用本文: 张辰, 饶云飞, 李倩倩, 等. 碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟[J]. 复合材料学报, 2021, 38(1): 165-176. doi: 10.13801/j.cnki.fhclxb.20200922.003
ZHANG Chen, RAO Yunfei, LI Qianqian, et al. Low-velocity impact behavior and numerical simulation of carbon fiber-glass fiber hybrid reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 165-176. doi: 10.13801/j.cnki.fhclxb.20200922.003
Citation: ZHANG Chen, RAO Yunfei, LI Qianqian, et al. Low-velocity impact behavior and numerical simulation of carbon fiber-glass fiber hybrid reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 165-176. doi: 10.13801/j.cnki.fhclxb.20200922.003

碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟

doi: 10.13801/j.cnki.fhclxb.20200922.003
详细信息
    通讯作者:

    李炜,博士,教授,博士生导师,研究方向为碳纤维复合材料的性能 E-mail:liwei@dhu.edu.cn

  • 中图分类号: TB332

Low-velocity impact behavior and numerical simulation of carbon fiber-glass fiber hybrid reinforced epoxy composites

  • 摘要: 本文基于实验和数值模拟方法研究了碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能。采用商业有限元软件ABAQUS建立了层间/层内两类混杂复合材料低速冲击模型,采用基于应变形式的Hashin失效准则模拟面内损伤;零厚度Cohesive内聚力单元预测层间分层;编写VUMAT子程序定义渐进失效过程,并结合C扫和Micro-CT扫描,分析了复合材料内部微观损伤形貌及损伤分布情况。结果表明,层间混杂结构复合材料的抗冲击性能更优,其中铺层形式为I-C的混杂复合材料抗冲击性能最佳,冲击面为玻璃纤维时混杂结构复合材料对冲击响应区别不明显,CN-1层内混杂结构复合材料抗冲击性能优于CN-2层内混杂结构复合材料。低速冲击损伤主要为冲击处纤维断裂、基体破坏及界面分层,混杂结构可有效降低冲击破坏,层间混杂结构中玻璃纤维层损伤较大,层内混杂结构损伤受混杂界面影响,碳纤维束对临近的玻璃纤维束具有保护作用。

     

  • 图  1  CF-GF层内混杂织物结构示意图

    Figure  1.  Schematic structure of CF-GF intralayer hybrid NCF fabrics

    图  2  CF-GF层间及夹芯混杂增强环氧树脂复合材料低速冲击模型

    Figure  2.  Low velocity impact model of CF-GF interlayer and sandwich hybrid reinforced epoxy composites

    图  3  CF-GF层内混杂增强环氧树脂复合材料低速冲击模型

    Figure  3.  Low velocity impact model of CF-GF intralayer hybrid reinforced epoxy composite

    图  4  CF-GF层内混杂增强环氧树脂复合材料RUC模型

    Figure  4.  RUC model of CF-GF intralayer hybrid reinforced epoxy composite

    图  5  CF-GF混杂增强环氧树脂复合材料的极限载荷和吸收能量

    Figure  5.  Maximum force and absorbed energy of CF-GF hybrid reinforced epoxy composites

    图  6  30 J能量冲击下C、I-C、S-G、CN-1的CF-GF混杂增强环氧树脂复合材料实验与数值模拟时间-载荷及时间-能量对比曲线

    Figure  6.  Comparison of experiment and simulation numerical results on time-force and time-energy curves of CF-GF hybrid reinforced epoxy composites of C, I-C, S-G, CN-1 after 30 J impact

    图  7  50 J能量冲击后CF-GF混杂增强环氧树脂复合材料C扫描及模拟(SDEG)分层损伤

    Figure  7.  C-scan and simulation (SDEG) of delamination damage of CF-GF hybrid reinforced epoxy composites after 50 J impact

    图  8  50 J能量冲击后CF-GF混杂增强环氧树脂复合材料的分层损伤面积

    Figure  8.  Delamination damage area of CF-GF hybrid reinforced epoxy composites after 50 J impact

    图  9  50 J能量冲击后CF-GF混杂增强环氧树脂复合材料表面纤维目视及模拟(SDV1)破坏形貌

    Figure  9.  Visual and simulation (SDV1) of surface fiber damage of CF-GF hybrid reinforced epoxy composites after 50 J impact

    图  10  50 J能量冲击后CF-GF混杂增强环氧树脂复合材料表面基体目视及模拟(SDV2)破坏形貌

    Figure  10.  Visual and simulation (SDV2) of surface matrix damage of CF-GF hybrid reinforced epoxy composites after 50 J impact

    图  11  30 J能量冲击后I-G、S-G、CN-1、CN-2的CF-GF混杂增强环氧树脂复合材料Micro-CT扫描横截面损伤

    Figure  11.  Micro-CT results of cross-section damage of CF-GF hybrid reinforced epoxy composites of I-G, S-G, CN-1, CN-2 after 30 J impact

    图  12  不同时刻I-C和CN-1的CF-GF混杂增强环氧树脂复合材料纤维损伤(SDV1)情况

    Figure  12.  Fiber damage (SDV1) condition of CF-GF hybrid reinforced epoxy composites of I-C and CN-1 at different time

    图  13  不同时刻I-C和CN-1的CF-GF混杂增强环氧树脂复合材料基体损伤(SDV2)情况

    Figure  13.  Matrix damage (SDV2) condition of CF-GF hybrid reinforced epoxy composites of I-C and CN-1 at different time

    表  1  碳纤维-玻璃纤维(CF-GF)单向经编织物(NCF)规格

    Table  1.   Specifications of carbon fiber-glass fiber (CF-GF) non-crimp fabric (NCF)

    Fabric typeAreal density/(g·m−2)Mass ratio of CF to GF
    CFGF
    CF 728.3 0 1∶0
    GF 0 944.9 0∶1
    CF-GF 364.2 472.4 1∶1
    CF-CF-GF-GF 364.2 472.4 1∶1
    下载: 导出CSV

    表  2  CF-GF混杂复合材料层合板铺层结构

    Table  2.   Stacking configurations of CF-GF hybrid composite laminates

    Hybrid structureStacking sequenceNomenclature
    Non-hybrid (CFCFCFCF)2s C
    (GFGFGFGF)2s G
    Interply-hybrid (CFGFCFGF)2s I-C
    (GFCFGFCF)2s I-G
    Sandwich-hybrid (CFCFGFGF)2s S-C
    (GFGFCFCF)2s S-G
    Intralayer-hybrid (CF-GF) fabric CN-1
    (CF-CF-GF-GF) fabric CN-2
    下载: 导出CSV

    表  3  用于数值模拟的CF/2511-1A/BS环氧树脂复合材料和GF/2511-1A/BS环氧树脂复合材料弹性参数

    Table  3.   Elastic parameters of CF/2511-1A/BS epoxy composites and GF/2511-1A/BS epoxy composites used in numerical simulation

    MaterialE11/GPaE22=E33/GPaG12=G13/GPaG23/GPa$ {\mu }_{12} $$ {\mu }_{13} $$ {\mu }_{23} $${G}_{{\rm{f}}}$/(kJ·m−2)${G}_{{\rm{m}}}$/(kJ·m−2)
    CF/epoxy 110 8.3 4.6 3.4 0.303 0.303 0.38 80 1
    GF/epoxy 40 8.4 4.3 3.2 0.315 0.315 0.39 65 1
    Notes: E11, E22, E33—Elastic modulus (direction 11, 22, 33); G12, G13, G23—Shear modulus (direction 12, 13, 23); $ {\mu }_{12} $, $ {\mu }_{13} $, $ {\mu }_{23} $—Poisson’s ratio (direction 12, 13 and 23).
    下载: 导出CSV

    表  4  用于数值模拟的CF/2511-1A/BS环氧树脂复合材料和GF/2511-1A/BS环氧树脂复合材料的强度参数

    Table  4.   Strength parameters of CF/2511-1A/BS epoxy composites and GF/2511-1A/BS epoxy composites used in numerical simulation MPa

    MaterialXTXCYT=ZTYC=ZCS12=S13S23
    CF/epoxy 1600 640 48 150 80 60
    GF/epoxy 860 550 48 140 65 60
    下载: 导出CSV

    表  5  CF/2511-1A/BS环氧树脂复合材料和GF/2511-1A/BS环氧树脂复合材料的层间界面参数

    Table  5.   Material properties of interface cohesive elements for CF/2511-1A/BS epoxy composites and GF/2511-1A/BS epoxy composites

    ρ/(kg·m−3)kN/(GPa·mm−1)kS=kT/(GPa·mm−1)N/MPaS=T/MPa$ G_{\rm{n}}^{\rm{C}}$/(J·m−2)$ G_{\rm{S}}^{\rm{C}}$/(J·m−2)η
    1200 15 1.2 30 60 0.28 0.8 1.5
    下载: 导出CSV

    表  6  CF-GF层内混杂增强环氧树脂复合材料模型中CF、GF和2511-1A/BS环氧树脂的材料参数

    Table  6.   Material paramenters of CF, GF and 2511-1A/BS epoxy for CF-GF intralayer hybrid reinforced epoxy composite model

    MaterialE11/GPaE22=E33/GPaG12=G13/GPaG23/GPa$ {\mu }_{12} $$ {\mu }_{13} $$ {\mu }_{23} $$ \rho $/(kg·m−3)
    CF 234 20 9.2 7.4 0.3 0.3 0.34 1.77
    GF 78.7 7 4.0 2.5 0.3 0.3 0.4 2.54
    2511-1A/BS epoxy 3.1 0.3 1.13
    下载: 导出CSV

    表  7  CF-GF层内混杂增强环氧树脂复合材料模型中CF和GF纤维束的力学性能

    Table  7.   Mechanical properties of CF and GF fiber bundle for CF-GF intralayer hybrid reinforced epoxy composite model

    MaterialE11/GPaE22=E33/GPaG12=G13/GPaG23/GPaμ12μ13μ23
    CF fiber bundle 153 8.70 3.60 3.20 0.3 0.3 0.36
    GF fiber bundle 52 5.27 2.48 1.88 0.3 0.3 0.40
    下载: 导出CSV
  • [1] SUN G Y, YU H, WANG Z, et al. Energy absorption mechanics and design optimization of CFRP/aluminium hybrid structures for transverse loading[J]. International Journal of Mechanical Sciences,2019,150:767-783. doi: 10.1016/j.ijmecsci.2018.10.043
    [2] CHEN D D, SUN G, MENG M, et al. Flexural performance and cost efficiency of carbon/basalt/glass hybrid FRP composite laminates[J]. Thin-Walled Structures,2019,142:516-531. doi: 10.1016/j.tws.2019.03.056
    [3] KALANTARI M, DONG C S, DAVIES I J. Multi-objective analysis for optimal and robust design of unidirectional glass/carbon fibre reinforced hybrid epoxy composites under flexural loading[J]. Composites Part B: Engineering,2016,84:130-139.
    [4] JESTHI D K, MANDAL P, ROUT A K, et al. Enhancement of mechanical and specific wear properties of glass/carbon fiber reinforced polymer hybrid composite[J]. Procedia Manufacturing,2018,20:536-541. doi: 10.1016/j.promfg.2018.02.080
    [5] SUBADRA S P, GRISKEVICIUS P, YOUSEF S. Low velocity impact and pseudo-ductile behaviour of carbon/glass/epoxy and carbon/glass/PMMA hybrid composite laminates for aircraft application at service temperature[J]. Polymer Testing,2020,89:106711.
    [6] SWOLFS Y, GEBOES Y, GORBATIKH L, et al. The importance of translaminar fracture toughness for the penetration impact behaviour of woven carbon/glass hybrid composites[J]. Composites Part A: Applied Science and Manufacturing,2017,103:1-8. doi: 10.1016/j.compositesa.2017.09.009
    [7] HUNG P, LAU K, HUI D, et al. Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications[J]. Composites Part B: Engineering,2018,133:86-90. doi: 10.1016/j.compositesb.2017.09.026
    [8] MANIKANDAN P, CHAI G B. A similitude approach towards the understanding of low velocity impact characteristics of bi-layered hybrid composite structures[J]. Composites Structures,2015,131:183-192. doi: 10.1016/j.compstruct.2015.04.055
    [9] SARASINI F, TIRILLÒ J, VALENTE M, et al. Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites[J]. Composites Part A: Applied Science and Manufacturing,2013,47:109-123.
    [10] LIU P F, LIAO B B, JIA L Y, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact[J]. Composite Structures,2016,149:408-422.
    [11] HOU Y L, TIE Y, LI C, et al. Low-velocity impact behaviors of repaired CFRP laminates: Effect of impact location and external patch configurations[J]. Composites Part B: Engineering,2019,163:669-680. doi: 10.1016/j.compositesb.2018.12.153
    [12] EBINA M, YOSHIMURA A, SAKAUE K, et al. High fidelity simulation of low velocity impact behavior of CFRP laminate[J]. Composites Part A: Applied Science and Manufacturing,2018,113:166-179. doi: 10.1016/j.compositesa.2018.07.022
    [13] CHEN D D, LUO Q, MENG M Z, et al. Low velocity impact behavior of interlayer hybrid composite laminates with carbon/glass/basalt fibers[J]. Composites Part B: Engineering,2019,176:107191. doi: 10.1016/j.compositesb.2019.107191
    [14] WU Z Y, ZHANG L C, YING Z, et al. Low-velocity impact performance of hybrid 3D carbon/glass woven orthogonal composite: Experiment and simulation[J]. Composites Part B: Engineering,2020,196:108098. doi: 10.1016/j.compositesb.2020.108098
    [15] ZHOU J J, WEN P H, WANG S N. Numerical investigation on the repeated low-velocity impact behavior of composite laminates[J]. Composites Part B: Engineering,2020,185:107771. doi: 10.1016/j.compositesb.2020.107771
    [16] LIAO B B, WANG P D ZHENG J Y, et al. Effect of double impact positions on the low velocity impact behaviors and damage interference mechanism for composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2020,136:105964. doi: 10.1016/j.compositesa.2020.105964
    [17] WANG K K, ZHAO L B, HONG, H M, et al. A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates[J]. Composite Structures,2018,201:995-1003. doi: 10.1016/j.compstruct.2018.06.046
    [18] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136M—05[S]. West Conshohocken: ASTM International, 2005.
    [19] LIU H B, FALZON B G, TAN W, et al. Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part B: Engineering,2018,136:101-118. doi: 10.1016/j.compositesb.2017.10.016
    [20] LIU Y, ZHUANG W M, WU D. Performance and damage of carbon fibre reinforced polymer tubes under low-velocity transverse impact[J]. Thin-Walled Structure,2020,151:106727. doi: 10.1016/j.tws.2020.106727
    [21] TUO H L, LU Z X, MAN X P, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions[J]. Composites Part B: Engineering,2019,163:642-654. doi: 10.1016/j.compositesb.2019.01.006
    [22] HAN W Q, HU K J, SHI Q H, et al. Damage evolution analysis of open-hole tensile laminated composites using a progress damage model verified by AE and DIC[J]. Composite Structures,2020,247:112452. doi: 10.1016/j.compstruct.2020.112452
    [23] WANG H R, LONG S C, ZHANG X Q, et al. Study on the delamination behavior of thick composite laminates under low energy impact[J]. Composite Structures,2018,184:461-473. doi: 10.1016/j.compstruct.2017.09.083
    [24] LIU S K, ZHANG J J, CHEN Z T, et al. Modeling the coupling effects of braiding structure and thermo-oxidative aging on the high-speed impact responses of 3D braided composites[J]. Thin-Walled Structures,2020,150:106705. doi: 10.1016/j.tws.2020.106705
    [25] CAO W J, ZHANG J J, SUN B Z, et al. X-ray tomography and numerical study on low-velocity impact damages of three-dimensional angle-interlock woven composites[J]. Composite Structures,2019,230:111525. doi: 10.1016/j.compstruct.2019.111525
    [26] SRIDHARAN S, PANKOW M. Performance evaluation of two progressive damage models for composite laminates under various speed impact loading[J]. International Journal of Impact Engineering,2020,143:103615. doi: 10.1016/j.ijimpeng.2020.103615
    [27] ZHANG C, RAO Y F, LI W. Low-velocity impact behavior of intralayer hybrid composites based on carbon and glass non-crimp fabric[J]. Composite Structures,2020,234:111713. doi: 10.1016/j.compstruct.2019.111713
    [28] ZHANG C, RAO Y F, LI Z, et al. Low-velocity impact behavior of interlayer/intralayer hybrid composites based on carbon and glass non-crimp fabric[J]. Materials,2018,11(12):2472. doi: 10.3390/ma11122472
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  2642
  • HTML全文浏览量:  865
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 录用日期:  2020-09-16
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回