留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属-有机骨架的锂离子电池硅负极的研究进展

张欢欢 万琦 石庆宇 雷舒畅

张欢欢, 万琦, 石庆宇, 等. 基于金属-有机骨架的锂离子电池硅负极的研究进展[J]. 复合材料学报, 2021, 38(1): 45-54. doi: 10.13801/j.cnki.fhclxb.20200921.005
引用本文: 张欢欢, 万琦, 石庆宇, 等. 基于金属-有机骨架的锂离子电池硅负极的研究进展[J]. 复合材料学报, 2021, 38(1): 45-54. doi: 10.13801/j.cnki.fhclxb.20200921.005
ZHANG Huanhuan, WAN Qi, SHI Qingyu, et al. Progress of silicon-based anode for lithium-ion batteries with metal-organic frameworks[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 45-54. doi: 10.13801/j.cnki.fhclxb.20200921.005
Citation: ZHANG Huanhuan, WAN Qi, SHI Qingyu, et al. Progress of silicon-based anode for lithium-ion batteries with metal-organic frameworks[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 45-54. doi: 10.13801/j.cnki.fhclxb.20200921.005

基于金属-有机骨架的锂离子电池硅负极的研究进展

doi: 10.13801/j.cnki.fhclxb.20200921.005
基金项目: 西南科技大学博士基金 (19zx7113)
详细信息
    通讯作者:

    万琦,博士,副研究员,硕士生导师,研究方向为锂离子电池材料、纳米碳材料  E-mail:wanqi@swust.edu.cn

  • 中图分类号: TM911

Progress of silicon-based anode for lithium-ion batteries with metal-organic frameworks

  • 摘要: 近年来,金属-有机骨架(MOFs)及其衍生物由于具有高孔隙率、可修饰的官能团、可控的化学成分等优点,在改善硅负极体积膨胀和导电性等方面取得了很大进展。通过讨论MOFs及其衍生物在锂离子电池硅负极的最新研究成果,重点阐述了以MOFs为基体的硅负极的结构设计,提出了影响其电化学性能的相关因素。最后,针对MOFs及其衍生物在电化学应用中的研究瓶颈和可能的发展方向提出看法。

     

  • 图  1  一些金属-有机骨架(MOFs)衍生的纳米结构[13,19]

    Figure  1.  Some metal-organic frameworks (MOFs)-derived nanostructures[13,19]

    MO—CoO, Ni2O3 and Mn3O4; BNG—B, N co-doped graphitic nanotubes; QD—Quantum dots; NC-1—N-doped wrinkled carbon; PNCs—Porous nitrogen-doped carbons

    图  2  MOFs的晶体结构和经过30个循环后不同MOFs包覆的微硅第六个循环的容量和容量保持(Si/MOF表示包覆不同MOFs)[22]

    Figure  2.  Crystal structures of different MOFs and capacities of sixth cycle and capacity retentions of micro-Si and micro-Si coated by different MOFs after 30 cycles (Si/MOF represents surface coated by different MOFs)[22]

    图  3  在不同电流密度下Si@ZIF-8-700N复合材料的放电容量(电池在试验前以50 mA·g−1的电流密度循环10次)和在200 mA·g−1下Si@ZIF-8-700N复合材料的循环性能[40]

    Figure  3.  Discharge capacity of Si@ZIF-8-700N composite at various current densities (cells were cycled for 10 times at a current density of 50 mA·g−1 before test) and long cycle performance of Si@ZIF-8-700N composite at 200 mA·g−1[40]

    图  4  UiO-66和UiO-67的晶体结构和相关材料纳米压痕试验的拉伸曲线[58]

    Figure  4.  Crystal structures of UiO-66 and UiO-67 and tensile curves of nanoindentation tests of related materials[58]

    图  5  PBAs@Si和PBAs@Si-450复合材料在不同循环时的dQ/dV曲线[67]

    Figure  5.  dQ/dV curves of PBAs@Si and PBAs@Si-450 composites at different cycles[67]

  • [1] CUI Q, ZHONG Y, PAN L, et al. Recent advances in designing high-capacity anode nanomaterials for Li-ion batteries and their atomic-scale storage mechanism studies[J]. Advanced Science,2018,5(7):1700902. doi: 10.1002/advs.201700902
    [2] LIU Y, LIU H, ZHAO X, et al. Effect of spherical particle size on the electrochemical properties of lithium iron phosphate[J]. Journal of Wuhan University of Technology (Materials Science Edition),2019,34(3):549-557. doi: 10.1007/s11595-019-2086-y
    [3] ZUO Y, LI B, JIANG N, et al. A high capacity O2 type Li rich cathode material with a single layer Li2MnO3 superstructure[J]. Advanced Materials,2018,30(16):1707255. doi: 10.1002/adma.201707255
    [4] WU F, MAJER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E
    [5] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology,2008,3(1):31-35. doi: 10.1038/nnano.2007.411
    [6] LI B, WANG Y F, JIANG N, et al. Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries[J]. Nano Energy,2020,72:104727. doi: 10.1016/j.nanoen.2020.104727
    [7] YIN P, YAO T, WU Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie International Edition,2016,55(36):10800-10805. doi: 10.1002/anie.201604802
    [8] KIM M, CHOI I, KIM J J. Facile electrochemical synthesis of heterostructured amorphous-Sn@CuxO nanowire anode for Li-ion batteries with high stability and rate-performance[J]. Applied Surface Science,2019,478:225-233.
    [9] JIANG Z, LI C, HAO S, et al. An easy way for preparing high performance porous silicon powder by acid etching Al-Si alloy powder for lithium ion battery[J]. Electrochimica Acta,2014,115:393-398. doi: 10.1016/j.electacta.2013.08.123
    [10] LEE S S, NAM K H, JUNG H, et al. Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes[J]. Chemical Engineering Journal,2020,381:122619. doi: 10.1016/j.cej.2019.122619
    [11] LU X, LUO F, XIONG Q, et al. Sn-MOF derived bimodal-distributed SnO2 nanosphere as a high performance anode of lithium ion batteries with high gravimetric and volumetric capacities[J]. Materials Research Bulletin,2018,99:45-51. doi: 10.1016/j.materresbull.2017.10.040
    [12] HUANG G, YIN D, ZHANG F, et al. Yolk@shell or concave cubic NiO-Co3O4@C nanocomposites derived from metal-organic frameworks for advanced lithium-ion battery anodes[J]. Inorganic Chemistry,2017,56(16):9794-9801. doi: 10.1021/acs.inorgchem.7b01296
    [13] ZHONG M, KONG L, LI N, et al. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries[J]. Coordination Chemistry Reviews,2019,388:172-201. doi: 10.1016/j.ccr.2019.02.029
    [14] YANG Y W, LIU X H, GAO E P, et al. Self-template construction of nanoporous carbon nanorods from a metal-organic framework for supercapacitor electrodes[J]. RSC Advances,2018,8(37):20655-20660. doi: 10.1039/C8RA03650K
    [15] DANG S, ZHU Q L, XU Q. Nanomaterials derived from metal-organic frameworks[J]. Nature Reviews Materials,2018,3:17075. doi: 10.1038/natrevmats.2017.75
    [16] LI Y, JIANG B, HUANG Y. Constructing nanosheet-like MOF on the carbon fiber surfaces for improving the interfacial properties of carbo fiber/epoxy composites[J]. Applied Surface Science,2020,514:145870. doi: 10.1016/j.apsusc.2020.145870
    [17] WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters,2011,11(12):5421-5425. doi: 10.1021/nl203193q
    [18] WANG X, KURONO R, NISHIMURA S, et al. Iron-oxalato framework with one-dimensional open channels for electrochemical sodium-ion intercalation[J]. Chemistry: A European Journal,2015,21(3):1096-1101. doi: 10.1002/chem.201404929
    [19] XIA W, MAHMOOD A, ZOU R, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy & Environmental Science,2015,8(7):1837-1866.
    [20] SHEN K, CHEN X, CHEN J, et al. Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J]. ACS Catalysis,2016,6(9):5887-5903. doi: 10.1021/acscatal.6b01222
    [21] YOON T, BOK T, KIM C, et al. Mesoporous silicon hollow nanocubes derived from metal-organic framework template for advanced lithium-ion battery anode[J]. ACS Nano,2017,11(5):4808-4815. doi: 10.1021/acsnano.7b01185
    [22] HAN Y, QI P, ZHOU J, et al. Metal-organic frameworks (MOF) as sandwich coating cushion for silicon anode in lithium ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(48):26608-26613.
    [23] COGNET M, CONDOMINES J, CAMBEDOUZOU J, et al. An original recycling method for Li-ion batteries through large scale production of metal organic frameworks[J]. Journal of Hazardous Materials,2020,385:121603. doi: 10.1016/j.jhazmat.2019.121603
    [24] SAFY M, HAIKAL R, ELSHAZLY B, et al. Charge percolation in metal-organic framework (HKUST-1) graphene nanocomposites[J]. Applied Materials Today,2020,19:100604. doi: 10.1016/j.apmt.2020.100604
    [25] YI Q, DU M, SHEN B, et al. Hollow Fe3O4/carbon with surface mesopores derived from MOFs for enhanced lithium storage performance[J]. Science Bulletin,2020,65(3):233-242. doi: 10.1016/j.scib.2019.11.004
    [26] LI T, BAI Y, WANG Y, et al. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries[J]. Coordination Chemistry Reviews, 2020, 410: 213221.
    [27] WU Q, ZHOU X, XU J, et al. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries[J]. Journal of Energy Chemistry,2019,38:94-113. doi: 10.1016/j.jechem.2019.01.005
    [28] ZHENG X, ZHANG L, FAN Z, et al. Enhanced catalytic activity over MIL-100(Fe) with coordinatively unsaturated Fe2+/Fe3+ sites for selective oxidation of H2S to sulfur[J]. Chemical Engineering Journal,2020,374:793-801.
    [29] XU Y, SUN X, WEI C, et al. A novel Si/Ag@PM@MIL-100 porous double-shell anode materials prepared by in-situ growth with MOF coatings[J]. Journal of Materials Science: Materials in Electronics,2020,31(2):1524-1534. doi: 10.1007/s10854-019-02669-z
    [30] PENG C, ZHANG Y, ZHANG B. MOF-derived jujube pit shaped C/Co composites with hierarchical structure for electromagnetic absorption[J]. Journal of Alloys and Compounds,2020,826:154203. doi: 10.1016/j.jallcom.2020.154203
    [31] BAI Y, ZENG M, WU X, et al. Three-dimensional cage-like Si@ZIF-67 core-shell composites for high performance lithium storage[J]. Applied Surface Science,2020,510:145477. doi: 10.1016/j.apsusc.2020.145477
    [32] GAO R, TANG J, YU X, et al. In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage[J]. Nano Energy,2020,70:104444. doi: 10.1016/j.nanoen.2019.104444
    [33] WANG M, GUO S. Highly uniform hollow CuCo2S4@C dodecahedra derived from ZIF-67 for high performance lithium-ion batteries[J]. Journal of Alloys and Compounds,2020,832:154978. doi: 10.1016/j.jallcom.2020.154978
    [34] LI L, WANG Q, ZHANG X, et al. Unique three-dimensional Co3O4@N-CNFs derived from ZIFs and bacterial cellulose as advanced anode for sodium-ion batteries[J]. Applied Surface Science,2020,508:145295. doi: 10.1016/j.apsusc.2020.145295
    [35] SUN X, XU W, ZHANG X, et al. ZIF-67@cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator[J]. Journal of Energy Chemistry,2020,52:170-180.
    [36] LIU Y, QUE X, WU X, et al. ZIF-67 derived carbon wrapped discontinuous CoxP nanotube as anode material in high-performance Li-ion battery[J]. Materials Today Chemistry,2020,17:100284. doi: 10.1016/j.mtchem.2020.100284
    [37] LIU N, LIU J, JIA D, et al. Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries[J]. Energy Storage Materials,2019,18:165-173. doi: 10.1016/j.ensm.2018.09.019
    [38] ZHANG W, CHU J, LI S, et al. CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn-air batteries[J]. Journal of Energy Chemistry,2020,51:323-332. doi: 10.1016/j.jechem.2020.04.067
    [39] QI H, FENG Y, CHI Z, et al. In situ encapsulation of Co-based nanoparticles into nitrogen-doped carbon nanotubes-modified reduced graphene oxide as an air cathode for high-performance Zn-air batteries[J]. Nanoscale,2020,11(45):21943-21952.
    [40] HAN Y, QI P, FENG X, et al. In situ growth of MOF on the surface of Si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion Batteries[J]. ACS Applied Materials & Interfaces,2015,7(4):2178-2182.
    [41] LIANG R, HU A, LI M, et al. Cobalt encapsulated within porous MOF-derived nitrogen-doped carbon as an efficient bifunctional electrocatalyst for aprotic lithium-oxygen battery[J]. Journal of Alloys and Compounds,2020,810:151877.
    [42] WEI Q, CHEN Y, HONG X, et al. Saclike-silicon nanoparticles anchored in ZIF-8 derived spongy matrix as high-performance anode for lithium-ion batteries[J]. Journal of Colloid and Interface Science,2020,565:315-325. doi: 10.1016/j.jcis.2020.01.050
    [43] LIANG J, LI X, CHENG Q, et al. High yield fabrication of hollow vesica-like silicon based on the Kirkendall effect and its application to energy storage[J]. Nanoscale,2015,7(8):3440-3444. doi: 10.1039/C4NR07642G
    [44] LIU F, LIU S, MENG J, et al. Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage[J]. Nano Energy,2020,73:104758. doi: 10.1016/j.nanoen.2020.104758
    [45] FENG L, HAN X, SU X, et al. Metal-organic frameworks derived porous carbon coated SiO composite as superior anode material for lithium ion batteries[J]. Journal of Alloys and Compounds,2018,765:512-519. doi: 10.1016/j.jallcom.2018.04.014
    [46] JIN D, YANG X, OU Y, et al. Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage[J]. Science Bulletin,2020,65(6):452-459. doi: 10.1016/j.scib.2019.12.005
    [47] WEI Q, CHEN Y M, HONG X J, et al. Novel bread-like nitrogen-doped carbon anchored nano-silicon as highstable anode for lithium-ion batteries[J]. Applied Surface Science,2020,511:145609. doi: 10.1016/j.apsusc.2020.145609
    [48] SUN K, XU C, HU T, et al. γ-Fe2O3/La-MOFs@SiO2 for magnetic resonance/fluorescence dual mode imaging and pH-drug delivery[J]. Materials Letters,2018,228:216-219. doi: 10.1016/j.matlet.2018.06.018
    [49] HU Z, CUI H, LI J, et al. Constructing three-dimensional Li-transport channels within the Fe3O4@SiO2@RGO composite to improve its electrochemical performance in Li-ion batteries[J]. Ceramics International,2020,46(11):18868-18877. doi: 10.1016/j.ceramint.2020.04.207
    [50] WU W, WANG M, WANG J, et al. Green design of Si/SiO2/C composites as high-performance anodes for lithium-ion Batteries[J]. ACS Applied Energy Materials,2020,3(4):3884-3892. doi: 10.1021/acsaem.0c00300
    [51] MAJEED M K, MA G, CAO Y, et al. Metal-organic frameworks-derived mesoporous Si/SiOx@NC nanospheres as a long-lifespan anode material for lithium ion batteries[J]. Chemistry: A European Journal,2019,25(51):11991-11997. doi: 10.1002/chem.201903043
    [52] ZHANG S, GAO H, XU X, et al. MOF-derived CoN/N-C@SiO2 yolk-shell nanoreactor with dual active sites for highly efficient catalytic advanced oxidation processes[J]. Chemical Engineering Journal,2020,381:122670. doi: 10.1016/j.cej.2019.122670
    [53] WANG K, PEI S, HE Z, et al. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chemical Engineering Journal,2019,356:272-281. doi: 10.1016/j.cej.2018.09.027
    [54] CHEN S, SHEN L, AKEN P A, et al. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Advanced Materials,2017,29(21):1605650. doi: 10.1002/adma.201605650
    [55] LUO F, LIU B, ZHENG J, et al. Review-nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of The Electrochemical Society,2015,162(14):2509-2528. doi: 10.1149/2.0131514jes
    [56] CHO K Y, SEO J Y, KIM H J, et al. Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: Insights into feasibility of Zr(Ⅳ)-based metal-organic framework (MOF) catalysts[J]. Applied Catalysis B: Environmental,2019,245:635-647. doi: 10.1016/j.apcatb.2019.01.033
    [57] HAO X, LIANG Y, ZHEN H, et al. Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2[J]. Journal of Solid State Chemistry,2020,287:121323. doi: 10.1016/j.jssc.2020.121323
    [58] MALIK R, LOVERIDGE M J, WILLIAMS L J, et al. Porous metal-organic frameworks for enhanced performance silicon anodes in lithium-ion batteries[J]. Chemistry of Materials,2019,31(11):4156-4165. doi: 10.1021/acs.chemmater.9b00933
    [59] RONG R, SUN Y, JI T, et al. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth[J]. Journal of Membrane Science,2020,610:118275. doi: 10.1016/j.memsci.2020.118275
    [60] WANG Q, GUO C, HE J, et al. Fe2O3/C-modified Si nanoparticles as anode material for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds,2019,795:284-290. doi: 10.1016/j.jallcom.2019.05.038
    [61] GUO C, HE J P, WU X, et al. Facile fabrication of honeycomb-like carbon network-encapsulated Fe/Fe3C/Fe3O4 with enhanced Li-storage performance[J]. ACS Applied Materials & Interfaces,2018,10(42):35994-36001.
    [62] ZHONG M, YANG D, XIE C, et al. Yolk-shell MnO@ZnMn2O4/N-C nanorods derived from α-MnO2/ZIF-8 as anode materials for lithium ion batteries[J]. Small,2016,12(40):5564-5571. doi: 10.1002/smll.201601959
    [63] ZHANG J, CHU R, CHEN Y, et al. MOF-derived transition metal oxide encapsulated in carbon layer as stable lithium ion battery anodes[J]. Journal of Alloys and Compounds,2019,797:83-91. doi: 10.1016/j.jallcom.2019.04.162
    [64] FU Y, ZHANG L, CHEN Y, et al. Multicolor upconversion luminescence of Ln-doped Sc2O3 achieved by coordination geometry mediated RE-MOFs molecular alloys as precursor[J]. Journal of Solid State Chemistry,2019,277:93-99. doi: 10.1016/j.jssc.2019.05.048
    [65] WANG C, MUTAHIR S, WANG L, et al. Hierarchical MOF-derived layered Fe3O4 QDs@C imbedded on graphene sheets as a high-performance anode for lithium-ion storage[J]. Applied Surface Science,2020,509:144882. doi: 10.1016/j.apsusc.2019.144882
    [66] KANETI Y V, TANG J, SALUNKHE R R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks[J]. Advanced Materials,2017,29(12):1604898. doi: 10.1002/adma.201604898
    [67] WU F, WANG H, SHI J, et al. Surface modification of silicon nanoparticles by an “ink” layer for advanced lithium ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(23):19639-19648.
    [68] ZUO X, XIA Y, JI Q, et al. Self-templating construction of 3D hierarchical macro-/mesoporous silicon from 0D silica nanoparticles[J]. ACS Nano,2017,11(1):889-899. doi: 10.1021/acsnano.6b07450
    [69] ULVESTAD A, ANDERSEN H F, MAEHLEN J P, et al. Long-term cyclability of substoichiometric silicon nitride thin film anodes for Li-ion batteries[J]. Scientific Reports,2017,7(1):13315. doi: 10.1038/s41598-017-13699-0
    [70] SINGH B, INDRA A. Prussian blue and Prussian blue analogue-derived materials: Progress and prospects for electrochemical energy conversion[J]. Materials Today Energy,2020,16:100404. doi: 10.1016/j.mtener.2020.100404
    [71] ZHANG K, MAO H, GU X, et al. ZIF-derived cobalt-containing N-doped carbon-coated SiOx nanoparticles for superior lithium storage[J]. ACS Applied Materials & Interfaces,2020,12(6):7206-7211.
    [72] QIU L, XIANG W, TIAN W, et al. Polyanion and cation co-doping stabilized Ni-rich Ni-Co-Al material as cathode with enhanced electrochemical performance for Li-ion battery[J]. Nano Energy,2019,63:103818. doi: 10.1016/j.nanoen.2019.06.014
    [73] SURTHI K K, KAR K K, JANAKARAJAN R. Shape controlled and structurally stabilized Co-doped olivine lithium phosphate cathodes for high voltage conventional, thin and flexible Li-ion batteries[J]. Chemical Engineering Journal,2020,399:125858. doi: 10.1016/j.cej.2020.125858
  • 加载中
图(5)
计量
  • 文章访问数:  1722
  • HTML全文浏览量:  595
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 录用日期:  2020-09-07
  • 网络出版日期:  2020-09-21
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回