留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷-金属双连续相复合材料的发展现状与未来

杜之明 费岩晗 孙永根 陈丽华 王延春 綦育仕 陈丽丽

杜之明, 费岩晗, 孙永根, 等. 陶瓷-金属双连续相复合材料的发展现状与未来[J]. 复合材料学报, 2021, 38(2): 315-338. doi: 10.13801/j.cnki.fhclxb.20200909.002
引用本文: 杜之明, 费岩晗, 孙永根, 等. 陶瓷-金属双连续相复合材料的发展现状与未来[J]. 复合材料学报, 2021, 38(2): 315-338. doi: 10.13801/j.cnki.fhclxb.20200909.002
DU Zhiming, FEI Yanhan, SUN Yonggen, et al. Development status and future of ceramic-metal co-continuous composite material[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 315-338. doi: 10.13801/j.cnki.fhclxb.20200909.002
Citation: DU Zhiming, FEI Yanhan, SUN Yonggen, et al. Development status and future of ceramic-metal co-continuous composite material[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 315-338. doi: 10.13801/j.cnki.fhclxb.20200909.002

陶瓷-金属双连续相复合材料的发展现状与未来

doi: 10.13801/j.cnki.fhclxb.20200909.002
详细信息
    通讯作者:

    杜之明,博士,博士生导师,研究方向为金属基复合材料  E-mail:duzm@263.net

  • 中图分类号: TB333;TG146.2

Development status and future of ceramic-metal co-continuous composite material

  • 摘要: 陶瓷-金属双连续相复合材料作为一种采用空间连续网络构型设计的复合材料,具有耐摩擦磨损、抗热震性高、热膨胀系数低等特点,具有广阔的应用前景。其中,多孔陶瓷预制体作为双连续相复合材料中的结构增强相,其本征特性对复合材料的整体性能有重要影响。本文系统分析了现阶段在多孔陶瓷的制备方法与表面改性两个领域内的主要进展,并对陶瓷-金属双连续相复合材料的制备技术与性能研究进行了介绍。最后,展望了陶瓷-金属双连续相复合材料在未来的发展过程中可能会遇到的四大挑战。

     

  • 图  1  四种增强相构型[14]

    Figure  1.  Schematic illustration of four types of reinforcement architectures[14]

    图  2  多孔陶瓷的孔径分类及相应的典型应用

    Figure  2.  Classification of porous materials by pore size and corresponding typical applications

    图  3  有机泡沫浸渍-高温处理法的典型工艺流程

    Figure  3.  Typical flow chart for the fabrication of porous ceramics by organic foam impregnation-high temperature sacrifice

    图  4  有机泡沫复制法制备的多孔陶瓷的SEM图像[38]

    Figure  4.  SEM images of porous ceramics fabricated by replication[38] ((a) Low magnifications; (b) High magnifications)

    图  5  添加剂法制备多孔陶瓷原理图

    Figure  5.  Diagram of fabrication process of porous ceramics by pore-forming agent

    图  6  采用不同造孔剂制备的多孔陶瓷微观形貌的SEM图像

    Figure  6.  SEM images of porous ceramics fabricated by different sacrificial fugitives ((a) PMMA[49]; (b) Sucrose[50]; (c) Fe2O3[51]; (d) Glycerol[52])

    图  7  发泡法制备的不同孔隙结构的多孔陶瓷

    Figure  7.  Porous ceramics with different microstructures fabricated by foaming method ((a) Closed-cell[58]; (b) Partial open-cell[59]; (c) Open-cell[60])

    图  8  采用冠醚修饰的SBA-15有序介孔材料的TEM图像[66]

    Figure  8.  TEM images of SBA-15 ordered mesoporous materials modified by crown ether[66]

    图  9  固相烧结法制备多孔陶瓷原理图

    Figure  9.  Fabrication process of porous ceramics by solid state sintering

    图  10  固相烧结法制备的Al2O3多孔陶瓷的SEM图像[72]

    Figure  10.  SEM images of porous ceramics fabricated by partial sintering[72] ((a) Al2O3 powder before sintering; (b) Porous ceramic structure after sintering)

    图  11  多孔微成形化的过程顺序[75]

    Figure  11.  Process sequence of porous micropatterning[75] ((a) Polymer blending to form a co-continuous blend; (b) Hot embossing with controllable thermomechanical history; (c) Sacrificial extraction and formation of porous patterns)

    图  12  利用生物模板制备RGO/Cu人造珍珠层示意图[78]

    Figure  12.  Schematic representation of fabricating RGO/Cu artificial nacre by biological templates[78]

    图  13  经过高温摩擦磨损实验后陶瓷-金属异质连接界面的应力腐蚀现象

    Figure  13.  Appearance of stress corrosion on ceramic-metal interface after friction and wear test at high temperature

    图  14  通过表面改性和ECP在氧化铝陶瓷上形成铜层的工艺示意图 (a)、多巴胺聚合物改性陶瓷表面与催化颗粒间可能的界面定位机制示意图 (b)[88]

    Figure  14.  Schematic diagram of the process for creating copper layer on alumina ceramic via modification and ECP (a), schematic illustration about a possible interfacial location mechanism for the modification between ceramic surface and catalytic particles by dopamine polymer (b)[88]

    图  15  利用颗粒堆积梯度多孔陶瓷试样成形过程示意图及FESEM图像[95]

    Figure  15.  Schematic illustration of the forming process and FESEM image of gradient porous ceramic sample[95]

    图  16  配备模具的离心机原理图[100]

    Figure  16.  Schematic diagram of a centrifuge with the mould[100]

    图  17  离心后粉末沉积的照片 (a)和粉末沉积物的分离 (b)[100]

    Figure  17.  Photograph of a powder deposit after centrifugation (a) and partition of the powder deposit (b)[100]

    图  18  多孔羟基磷灰石(HAP)样品的微观结构(垂直于冰面的横截面)[102]

    Figure  18.  Microstructure of porous hydroxyapatite (HAP) samples (Cross-section perpendicular to the ice front)[102]

    图  19  梯度氧化铝多孔支架的孔隙率和抗压强度与转速的函数结构关系[103]

    Figure  19.  Porosity and compressive strength of alumina porous scaffolds with gradient structures as a function of rotational speed[103]

    图  20  无压浸渗设备示意图

    Figure  20.  Schematic of the tube furnace setup for infiltration experiment

    图  21  挤压浸渗工艺流程示意图

    Figure  21.  Schematic diagram of squeeze infiltration process

    图  22  SiC网络陶瓷的宏观形貌 (a)、SiC多孔陶瓷的微观网络结构 (b)、SiC/Fe-20Cr的宏观形貌 (c)、SiC/Fe-20Cr的微观结构 (d) 和模拟微观力学模型(箭头为加载方向,点表示固定表面) (e)[114]

    Figure  22.  Macro-appearance of SiC network ceramic (a), microstructure of SiC network ceramic (b), macro-appearance of SiC/Fe-20Cr (c), microstructure of SiC/Fe-20Cr (d), simulated micromechanical model (Arrow is the loadingdirection, points mean the fixed surface) (e)[114]

    图  23  SiC/Fe-20Cr复合材料在1.0~2.0 MPa载荷下20 s的加载曲线[114]

    Figure  23.  Loading curve of SiC/Fe-20Cr composites under load from 1.0-2.0 MPa for 20 s[114]

    图  24  SiC预制体和Fe-20Cr基体在1.0~2.0 MPa载荷下20 s的应力-时间曲线[114]

    Figure  24.  Stress-time curve of SiC reinforcement and Fe-20Cr matrix under load from 1.0-2.0 MPa for 20 s[114]

    图  25  SiC/Al-23Si双连续相复合材料与Al-23Si合金在三种转速下的磨损质量损失[130]

    Figure  25.  Wear mass loss versus rotation rate for SiC/Al-23Si co-composites and Al-23Si at three rotation rates[130]

    表  1  几种多孔陶瓷制备方法的工艺性比较

    Table  1.   Technological comparison of several methods for preparing porous ceramics

    Type of technologyAperture sizeApparent porosity/%AdvantagesDisadvantage
    Organic foam impregnation 100 μm-5 mm 70-90 High porosity, adjustable aperture Low strength, environment pollution
    Pore forming agent method 10 μm-1 mm 0-50 Adjustable size and shape, high strength Inhomogeneous pores, low porosity
    Foaming method 10 μm-2 mm 40-90 High strength and porosity Complex process, high production cost
    Sol-gel >1 nm 30-70 Suitable for micropores, high free degree Limited use, high production cost
    Solid sintering 1-600 μm 20-30 Simple process, high strength Low porosity, environment pollution
    Template method 1 nm-100 μm 10-90 Large aperture distribution range, high strength High production cost, complex process
    下载: 导出CSV
  • [1] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286. doi: 10.1038/nature04969
    [2] REZWAN K, CHEN Q Z, BLAKER J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials,2006,27(18):3413-3431. doi: 10.1016/j.biomaterials.2006.01.039
    [3] 谭毅. 新材料概论[M]. 北京: 冶金工业出版社, 2004: 5.

    TAN Yi. Introduction new materials[M]. Beijing: Metallurgical Industry Press, 2004: 5(in Chinese).
    [4] 吴人洁. 下世纪我国复合材料的发展机遇与挑战[J]. 复合材料学报, 2000, 17(1):1-4. doi: 10.3321/j.issn:1000-3851.2000.01.001

    WU Renjie. The prospective opportunities and challenges of composite materials in China during the next century[J]. Acta Materiae Compositae Sinica,2000,17(1):1-4(in Chinese). doi: 10.3321/j.issn:1000-3851.2000.01.001
    [5] YIP N Y, TIRAFERRI A, PHILLIP W A, et al. High performance thin-film composite forward osmosis membrane[J]. Environmental Science & Technology,2010,44(10):3812-3818.
    [6] ZHANG Y, CHAN H F, LEONG K W. Advanced materials and processing for drug delivery: The past and the future[J]. Advanced Drug Delivery Reviews,2013,65(1):104-120. doi: 10.1016/j.addr.2012.10.003
    [7] BALLAL D R, ZELINA J. Progress in aeroengine technology (1939-2003)[J]. Journal of Aircraft,2015,41(1):43-50.
    [8] YVON P, CARRÉF. Structural materials challenges for advanced reactor systems[J]. Journal of Nuclear Materials,2009,385(2):217-222. doi: 10.1016/j.jnucmat.2008.11.026
    [9] LIU W, JIANG X, SHAO Z, et al. A review on nanocarbon-reinforced Cu-matrix nanocomposites with high mechanical strengths[J]. Current Nanoence,2017,13(4):410-420.
    [10] SHIN S E, KO Y J, BAE D H. Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures[J]. Composites,2016,106(12):66-73.
    [11] MELENDEZ I M, NEUBAUER E, ANGERER P, et al. Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites[J]. Composites Science & Technology,2011,71(8):1154-1162.
    [12] MOASERI E, KARIMI M, BANIADAM M, et al. Improvements in mechanical properties of multi-walled carbon nanotube-reinforced epoxy composites through novel magnetic-assisted method for alignment of carbon nanotubes[J]. Composites Part A: Applied Science & Manufacturing,2014,64:228-233.
    [13] SINGH T, PATNAIK A, SATAPATHY B K. Friction braking performance of nanofilled hybrid fiber reinforced phenolic composites: Influence of nanoclay and carbon nanotubes[J]. Nano Brief Reports & Reviews,2013,8(3):1-15.
    [14] ZHANG X, ZHAO N Q, HE C N. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design-A review[J]. Progress in Materials Science, 2020, 113: 100672.
    [15] MANFREDI D, PAVESE M, BIAMINO S, et al. Microstructure and mechanical properties of co-continuous metal/ceramic composites obtained from reactive metal penetration of commercial aluminium alloys into cordierite[J]. Composites Part A: Applied Science & Manufacturing, 2010, 41(5): 639-645.
    [16] RAMESH R, PRASANTH A S, RAGAVAN M, et al. SiC/aluminium co-continuous composite synthesized by reactive metal penetration[J]. Applied Mechanics and Materials, 2014, 592-594: 847-853.
    [17] MANFREDI D, PAVESE M, BIAMINO S, et al. Preparation and properties of NiAl(Si)/Al2O3 co-continuous compo-sites obtained by reactive metal penetration[J]. Compo-sites Science and Technology, 2009, 69(11-12): 1777-1782.
    [18] AGRAWAL P, CONLON K, BOWMAN K J, et al. Thermal residual stresses in co-continuous composites[J]. Acta Materialia, 2003, 51(4): 1143-1156.
    [19] YIN Y, ZHAO F, SONG X, et al. Preparation and characterization of hydroxyap-atite/chitosan-gelatin network composite[J]. Journal of Applied Polymer Science, 2000, 77(13): 2929-2938.
    [20] MYUNG D, WATERS D, WISEMAN M, et al. Progress in the development of interpenetrating polymer network hydrogels[J]. Polymers for Advanced Technologies,2008,19(6):647-657. doi: 10.1002/pat.1134
    [21] ARAKI K, HALLORAN J W. Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique[J]. Journal of the American Ceramic Society,2005,88(5):1108-1114. doi: 10.1111/j.1551-2916.2005.00176.x
    [22] 陈建春. 铝合金变质、细化、合金化材料及铝熔体物理净化材料的设计、工艺及应用研究[D]. 武汉: 武汉大学, 2011.

    CHEN J C. Preparation, techniques and applications of Al alloys for modification, refining and alloying, and materials and filtrators for physical purifying[D]. Wuhan: Wuhan University, 2011(in Chinese).
    [23] LV Y, LIU H, WANG Z, et al. Silver nanoparticle-decorated porous ceramic composite for water treatment[J]. Journal of Membrane Science,2009,331(1-2):50-56. doi: 10.1016/j.memsci.2009.01.007
    [24] GARCIA-PENA I, HERNANDEZ S, AURIA R, et al. Correlation of biological activity and reactor performance in biofiltration of toluene with the fungus paecilomycesvariotii CBS115145[J]. Applied and Environmental Microbiology,2005,71(8):4280-4285. doi: 10.1128/AEM.71.8.4280-4285.2005
    [25] HAART L G J D. Deposition and electrical properties of thin porous ceramic electrode layers for solid oxide fuel cell application[J]. Journal of the Electrochemical Society,1991,138(7):1970. doi: 10.1149/1.2085910
    [26] ÖZGÜR E N, CÜNEYT T A. Preparation of porous Ca10(PO4)6(OH)2 and β-Ca3(PO4)2 bioceramics[J]. Journal of the American Ceramic Society,2000,83(7):1581-1584.
    [27] LUKES P, CLUPEK M, BABICKY V, et al. Pulsed electrical discharge in water generated using porous-ceramic-coated electrodes[J]. IEEE Transactions on Plasma Science,2008,36(4):1146-1147. doi: 10.1109/TPS.2008.920945
    [28] JULBE A, FARRUSSENG D, GUIZARD C. Porous ceramic membranes for catalytic reactors-Overview and new ideas[J]. Journal of Membrane Science,2001,181(1):3-20. doi: 10.1016/S0376-7388(00)00375-6
    [29] OHJI T, FUKUSHIMA M. Macro-porous ceramics: Processing and properties[J]. International Materials Reviews,2012,57(2):115-131. doi: 10.1179/1743280411Y.0000000006
    [30] ZHAO C, ZENG L F. Pressurelessly sintering silicon carbide with additives of holmium oxide and alumina[J]. Materials Research Bulletin,1995,30(3):265-270. doi: 10.1016/0025-5408(95)00004-6
    [31] MATSUDA S, TAKAHASHI M. Fracture strength distribution of porous ceramics under quasi-static load[J]. Engineering Fracture Mechanics,2010,77(13):2601-2609. doi: 10.1016/j.engfracmech.2010.06.005
    [32] KISELOV V S, LYTVYN P M, YUKHYMCHUK V O, et al. Synthesis and properties of porous SiC ceramics[J]. Journal of Applied Physics,2010,107(9):1-6.
    [33] GUO X Z, YANG H. Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method[J]. Journal of Zhejiang University Science B,2005,6(3):213-218.
    [34] DIVECHA A P, FISHMAN S G, KARMARKAR S D. Silicon carbide reinforced aluminum-A formable composite[J]. Journal of Metals,2013,33(9):12-17.
    [35] CAO J, RUSINA O, SIEBER H. Processing of porous TiO2-ceramics from biological performs γ-Al2O3→α-Al2O3[J]. Ceramics International,2004,30(7):1971-1974. doi: 10.1016/j.ceramint.2003.12.180
    [36] KLAWITTER J J, HULBERT S F. Application of porous ceramics for the attachment of load bearing internal orthopedic applications[J]. Journal of Biomedical Materials Research Part A,2010,5(6):161-229.
    [37] SCHWARTZWALDER K, SOMESS A V. Method of making porous ceramic articles: US, US 30900941[P]. 1963-05-21.
    [38] COLOMBO P, HELLMANN J R. Ceramic foams from preceramic polymers[J]. Materials Research Innovations,2002,6(5-6):260-272. doi: 10.1007/s10019-002-0209-z
    [39] BERNARDO E, COLOMBO P, MANIAS E. SiOC glass modified by montmorillonite clay[J]. Ceramics International,2006,32(6):679-686. doi: 10.1016/j.ceramint.2005.05.002
    [40] ZHANG X Z, WANG R J, LIU G W, et al. Preparation of silicon carbide reticulated porous ceramics by organic foam impregnation[J]. Materials Science Forum,2015,814:574-578. doi: 10.4028/www.scientific.net/MSF.814.574
    [41] OKADA K, ISOBE T, KATSUMATA K I, et al. Porous ceramics mimicking nature-preparation and properties of microstructures with unidirectionally oriented pores[J]. Science & Technology of Advanced Materials,2011,12(6):064701.
    [42] LIU B, DONG Y S, LIN P H, et al. Preparation of polyphosphate porous bioceramics and in vitro cytocompatibility[J]. Journal of Inorganic Materials,2011,26(7):759-764. doi: 10.3724/SP.J.1077.2011.00759
    [43] SHANG S S, HE X, YANG Y, et al. Preparation of Ti2AlN porous ceramics by organic foam impregnation process[J]. Key Engineering Materials,2016,697:163-168. doi: 10.4028/www.scientific.net/KEM.697.163
    [44] WANG J, ZHAO J. Investigating the effect of SPRM on mechanical strength and thermal conductivity of highly porous alumina ceramics[J]. Ceramics International,2017,43(18):16430-16435. doi: 10.1016/j.ceramint.2017.09.022
    [45] ZUO K H, ZHANG Y, ZENG Y P, et al. Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite[J]. Ceramics International,2011,37(1):407-410. doi: 10.1016/j.ceramint.2010.08.015
    [46] QIAN H, CHENG X, ZHANG H, et al. Preparation of porous mullite ceramics using fly ash cenosphere as a pore-forming agent by gelcasting process[J]. International Journal of Applied Ceramic Technology,2014,11(5):858-863. doi: 10.1111/ijac.12204
    [47] ZUZANA Z V, LOCS J, KEUPER M, et al. Microstructural comparison of porous oxide ceramics from the system Al2O3-ZrO2 prepared with starch as a pore-forming agent[J]. Journal of the European Ceramic Society,2012,32(10):2163-2172. doi: 10.1016/j.jeurceramsoc.2012.02.005
    [48] HAN F, ZHONG Z, ZHANG F, et al. Preparation and characterization of SiC whisker-reinforced SiC porous ceramics for hot gas filtration[J]. Industrial & Engineering Chemistry Research,2015,54(1):226-232.
    [49] COLOMBO P. Engineering porosity in polymer-derived ceramics[J]. Journal of the European Ceramic Society,2008,28:1389-1395. doi: 10.1016/j.jeurceramsoc.2007.12.002
    [50] WANG C, KASUGA T, NOGAMI M. Macroporous Calcium phosphate glass-ceramic prepared by two-step pressing technique and using sucrose as a pore former[J]. Journal of Materials Science: Materials in Medicine,2005,16:739-744. doi: 10.1007/s10856-005-2611-8
    [51] BAI J G, YANG X H, SHI Y G, et al. Fabrication of directional SiC porous ceramics using Fe2O3 as pore-forming agent[J]. Materials Letters,2012,78:192-194. doi: 10.1016/j.matlet.2012.03.046
    [52] ZHANG Y M, HU L Y, HAN J C, et al. Freeze casting of aqueous alumina slurries with glycerol for porous ceramics[J]. Ceramics International,2010,36:617-621. doi: 10.1016/j.ceramint.2009.09.036
    [53] 吕咏梅. 发泡剂的研究现状与发展趋势[J]. 橡胶科技, 2005, 3(6):53-56.

    LV Yongmei. Present study situation and development tendency of blowing agents[J]. Plastics Science & Technology,2005,3(6):53-56(in Chinese).
    [54] 赵国玺. 表面活性剂物理化学[M]. 北京: 北京大学出版社, 1984: 35-48.

    ZHAO Guoxi. Physico-chemistry of surfactants[M]. Beijing: Peking University Press, 1984: 35-48(in Chinese).
    [55] SEPULVEDA P, BINNER J G P. Processing of cellular ceramics by foaming and in situ polymerization of organic monomers[J]. Journal of the European Ceramic Society,1999,19(12):2059-2066. doi: 10.1016/S0955-2219(99)00024-2
    [56] KIM Y W, PARK C B. Processing of microcellular preceramics using carbon dioxide[J]. Composites Science and Technology,2003,63(16):2371-2377. doi: 10.1016/S0266-3538(03)00270-7
    [57] YUAN L, HE Z B, YU J K. Fabrication of Al2O3-based porous ceramic with closed pores by superplastic high-temperature foaming method[J]. Journal of Northeastern University,2013,34(7):939-943.
    [58] GONZENBACH U T, STUDART A R, TERVOORT E, et al. Macroporous ceramics from particle-stabilized wet foams[J]. Journal of the American Ceramic Society,2007,90(1):16-22. doi: 10.1111/j.1551-2916.2006.01328.x
    [59] HE X, SU B, TANG Z H, ZHAO B, et al. The comparison of macroporous ceramics fabricated through the protein direct foaming and sponge replica methods[J]. Journal of Porous Materials,2012,19(5):761-766. doi: 10.1007/s10934-011-9528-z
    [60] BARG S, SOLTMANN C, ANDRADE M, et al. Cellular ceramics by direct foaming of emulsified ceramic powder suspensions[J]. Journal of the American Ceramic Society,2008,91(9):2823-2829. doi: 10.1111/j.1551-2916.2008.02553.x
    [61] JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous & Mesoporous Materials,2003,60(1-3):207-212.
    [62] SIMONENKO E P, SIMONENKO N P, PAPYNOV E K, et al. Preparation of porous SiC-ceramics by sol-gel and spark plasma sintering[J]. Journal of Sol-Gel Science and Technology,2017,82(3):748-759. doi: 10.1007/s10971-017-4367-2
    [63] 黄剑锋. 溶胶-凝胶原理与技术[M]. 北京: 化学工业出版社, 2005: 13-20.

    HUANG Jianfeng. Principle and technology of sol-gel[M]. Beijing: Chemical Industry Press, 2005: 13-20(in Chinese).
    [64] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359(6397):710-712. doi: 10.1038/359710a0
    [65] ALLAN S, STUART W C, MICHAEL W A. 29Si solid-state NMR study of mesoporous M41S materials[J]. Chemistry of Materials,1995,7(10):1829-1832. doi: 10.1021/cm00058a012
    [66] 刘栎锟, 叶钢, 陈靖, 等. 冠醚修饰的SBA-15型有序介孔硅基材料及应用: 中国, CN106268653B[P]. 2019-04-05.

    LIU Likun, YE Gang, CHEN Jing, et al. SBA-15 ordered mesoporous silicon based materials modified by crown ether and its application: China, CN106268653B[P]. 2019-04-05(in Chinese).
    [67] OGBEMI O O, MARK A J, STEPHEN D N. Gelcasting: From laboratory development toward industrial production[J]. Journal of the European Ceramic Society,1997,17(2):407-413.
    [68] 任强, 武秀兰. 微米级多孔陶瓷的研究[J]. 中国陶瓷工业, 2003, 10(2):21-23.

    REN Qiang, WU Xiulan. Development on micron porous ceramics[J]. China Ceramic Industry,2003,10(2):21-23(in Chinese).
    [69] YANAGISAWA K, IOKU K, YAMASAKI N. Formation of anatase porous ceramics by hydrothermal hot-pressing of amorphous titania spheres[J]. Journal of the American Ceramic Society,1997,80(5):1303-1306.
    [70] DING S Q, ZHU S, ZENG Y P, et al. Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding[J]. Journal of the European Ceramic Society,2007,27(4):2095-2102. doi: 10.1016/j.jeurceramsoc.2006.06.003
    [71] KISHIMOTO A, OBATA M, ASAOKA H, et al. Fabrication of alumina-based ceramic foams utilizing superplasticity[J]. Journal of the European Ceramic Society,2007,27(1):41-45. doi: 10.1016/j.jeurceramsoc.2006.03.002
    [72] JAYASEELAN D D, KONDO N, BRITO M E, et al. High-strength porous alumina ceramics by the pulse electric current sintering technique[J]. Journal of the American Ceramic Society,2002,85(1):267-269.
    [73] MASAYA K, JUNYA Y, YASUSHI S, et al. Preparation and electrochemical characteristics of N-enriched carbon foam[J]. Carbon,2007,45(5):1105-1107. doi: 10.1016/j.carbon.2007.02.023
    [74] ZHANG G J, YANG J F, OHJI T. Fabrication of porous ceramics with unidirectionally aligned continuous pores[J]. Journal of the American Ceramic Society,2001,84(6):1395-1397.
    [75] ZHANG W, LI M, WANG C, et al. Micropatterning of porous structures from Co/continuous polymer blends[J]. Advances in Polymer Technology,2013,32(1):166-179.
    [76] TANG F Q, FUDOUZI H, UCHIKOSHI T, et al. Preparation of porous materials with controlled pore size and poro-sity[J]. Journal of the European Ceramic Society,2004,24(2):341-344. doi: 10.1016/S0955-2219(03)00223-1
    [77] JIANG F Y, WANG J B, HE X H, et al. Morphgenetic Al2O3 porous ceramic with fabric-structure by processed bio-template from ramie fibres[J]. Materials Letters,2017,194(1):242-245.
    [78] XIONG D B, CAO M, GUO Q, et al. Graphene-and-copper artificial nacre fabricated by a preform impregnation process: Bioinspired strategy for strengthening-toughening of metal matrix composite[J]. ACS Nano,2015,9(7):6934-6943. doi: 10.1021/acsnano.5b01067
    [79] LU Y, YANG J F, LU W Z, et al. The mechanical properties of co-continuous Si3N4/Al composites manufactured by squeeze casting[J]. Materials Science and Engineering: A,2010,527(23):6289-6299. doi: 10.1016/j.msea.2010.06.047
    [80] DELUCA M A, MCCORMACK J F. Metallization of ceramics: US, US 4604299[P]. 1986-08-05.
    [81] RODRGUEZ-LORENZO L M, FERREIRA J M F. Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems[J]. Materials Research Bulletin,2004,39(1):83-91. doi: 10.1016/j.materresbull.2003.09.014
    [82] WOO B H, SONE M, SHIBATA A, et al. Effects of SC-CO2 catalyzation in metallization on polymer by electroless plating[J]. Surface and Coatings Technology,2009,203(14):1971-1978. doi: 10.1016/j.surfcoat.2009.01.031
    [83] LOUIS S. Method of coating metal: US, US 3185596[P]. 1965-05-25.
    [84] AKHMETZYANOV M, ALBAUT G. Study of large plastic strains and fracture in metal elements by photoelastic coating method[J]. International Journal of Fracture,2004,128(1-4):223-231.
    [85] GHOSH S, SENGUPTA A, PAL K S, et al. Characterization of metallized alumina ceramics[J]. Metallurgical & Materials Transactions A: Physical Metallurgy & Materials Science,2012,43(3):912-920.
    [86] CHENG Y S, YEUNG K L. Effects of electroless plating chemistry on the synthesis of palladium membranes[J]. Journal of Membrane Science,2001,182(1-2):195-203. doi: 10.1016/S0376-7388(00)00563-9
    [87] SHAFEEV G A, BELLARD L, THEMLIN J M, et al. Uncongruent laser ablation and electroless metallization of SiC[J]. Applied Physics Letters,1996,68(6):773. doi: 10.1063/1.116738
    [88] WANG Y, XU Y H, CAO Z Y, et al. A facile process to manufacture high performance copper layer on ceramic material via biomimetic modification and electroless plating[J]. Composites,2019,157(15):123-130.
    [89] JACSON T R, LIU H, PATRIKALAKIS N M. Modeling and designing functionally graded material components for fabrication with local composition control[J]. Materials & Design,1999,20(2-3):63-75.
    [90] NIINO M, HIRAI T, WATANABE R. Functionally gradient materials[J]. Journal of Japanese Society of Composite Material,1987,13(6):257. doi: 10.6089/jscm.13.257
    [91] DELFOSSE D. Fundamentals of functionally graded materials[J]. Materials Today,1998,1(4):18. doi: 10.1016/S1369-7021(98)80023-0
    [92] JIN Z H, PAULINO G H. Transient thermal stress analysis of an edge crack in a functionally graded material[J]. International Journal of Fracture,2001,107(1):73-98. doi: 10.1023/A:1026583903046
    [93] 艾桃桃. 梯度多孔陶瓷的制备技术[J]. 中国陶瓷, 2011, 47(3):59-61, 76.

    AI T T. Preparation techique of gradient porous ceramics[J]. China Ceramic,2011,47(3):59-61, 76(in Chinese).
    [94] ZHOU W B, ZHANG R B, AI S G, et al. Load distribution in threads of porous metal-ceramic functionally graded composite joints subjected to thermomechanical loading[J]. Composite Structures,2015,134:680-688. doi: 10.1016/j.compstruct.2015.08.113
    [95] ZHANG F, QI C X, WANG S, et al. A study on preparation of cordierite gradient pores porous ceramics from rectorite[J]. Solid State Sciences,2011,13(5):929-933. doi: 10.1016/j.solidstatesciences.2011.02.015
    [96] KEN D, CAROLINE R C. Processing of functionally gradient ceramic membrane substrates for enhanced porosity[J]. Journal of the American Ceramic Society,1999,82(8):2073-2079.
    [97] HALLORAN J. Materials science: Making better ceramic composites with ice[J]. Science,2006,311(5760):479-480. doi: 10.1126/science.1123220
    [98] LUCHINI B, HUBÁLKOVÁ J, WETZIG T, et al. Carbon-bonded alumina foam filters produced by centrifugation: A route towards improved homogeneity[J]. Ceramics International,2018,44(12):13832-13840. doi: 10.1016/j.ceramint.2018.04.228
    [99] AHMED A, SMITH J, ZHANG H. Gradient porous materials by emulsion centrifugation[J]. Chemical Communications,2011,47:11754-11760. doi: 10.1039/c1cc15212b
    [100] TRUNEC M, MISAK J. Consolidation of nanoparticle suspensions by centrifugation in non-porous moulds[J]. Ceramics International,2014,40(6):7775-7782. doi: 10.1016/j.ceramint.2013.12.120
    [101] GOMBOTZ W R, HEALY M S, BROWN L R. Very low temperature casting of controlled release microspheres: US, US5019400[P]. 1991-05-28.
    [102] TANG Y F, WU C, ZHAO K. Fabrication of lamellar porous alumina with graded structures by combining centrifugal and directional freeze casting[J]. Ceramics International,2017,44(5):5794-5798.
    [103] DEVILLE S, SAIZ E, TOMSIA P A. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials,2006,27(32):5480-5489. doi: 10.1016/j.biomaterials.2006.06.028
    [104] KONOPKA K, OLSZÁWKA-MYALSKA A, SZAFRAN M. Ceramic-metal composites with an interpenetrating network[J]. Materials Chemistry and Physics,2003,81(2-3):329-332. doi: 10.1016/S0254-0584(02)00595-3
    [105] ZHENG J, HU Y Y. New insights into compositional dependence of Li-ion transport in polymer-ceramic compo-site electrolytes[J]. ACS Applied Materials & Interfaces,2018,10(4):4113-4120.
    [106] AL-KETAN O, ASSAD A, AL-RUB R K A. Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures[J]. Composite Structures,2017,176:9-19. doi: 10.1016/j.compstruct.2017.05.026
    [107] ROY S, STOLL O, KAY ANDRÉ W, et al. Analysis of the elastic properties of an interpenetrating AlSi12-Al2O3 composite using ultrasound phase spectroscopy[J]. Composites Science and Technology,2011,71(7):962-968. doi: 10.1016/j.compscitech.2011.02.014
    [108] JANINA D A. Tribological properties of AlSi12-Al2O3 interpenetrating composite layers in comparison with unreinforced matrix alloy[J]. Materials,2017,10(9):1045. doi: 10.3390/ma10091045
    [109] SIDDHARTHA R, JENS G, VLADIMIR K, et al. Load partitioning study in a 3D interpenetrating AlSi12/Al2O3 metal/ceramic composite[J]. Materials Science Forum,2013,772(2):103-107.
    [110] KRISHNA S A M, SHRIDHA T N, KRISHNAMURTHY L. Experimental investigations on thermal analysis and thermal characterization of Al 6061-Sic-Gr hybrid metal matrix composites[J]. International Journal of Material Science Innovations,2015,5(2):54-66. doi: 10.12783/ijmsci.2015.0502.04
    [111] WANG D, ZHENG Z, LV J, et al. Enhanced thermal conductive 3D-SiC/Al-Si-Mg interpenetrating composites fabricated by pressureless infiltration[J]. Ceramics International,2016,43(2):1755-1761.
    [112] YAN H, YE H Y, CHEN W. Dry friction and wear performance of cocontinuous Al-23Si/SiC composites[J]. Materials Research Innovations,2015,19(9):131-135.
    [113] NAPOLE G E D, GOLDENSTEIN H, CARMO G M D, et al. Aluminium matrix composites reinforced with co-continuous in-terlaced phases aluminium-alumina needles[J]. Materials Research, 2002, 5(3): 337-342.
    [114] YU L, JIANG YL, LU SK, et al. Numerical simulations of compression properties of SiC/Fe-20Cr Co-continuous composites[C]//1st International Conference on 3D Materials Science. New Jersey: Wiley, 2016: 85-90.
    [115] SOY U, DEMIR A, CALISKAN F. Effect of bentonite addition on fabrication of reticulated porous SiC ceramics for liquid metal infiltration[J]. Ceramics International, 2011, 37(1): 15-19.
    [116] KIM J S, KWON Y S, LOMOVSKY O I, et al. A synthetic route for metal-ceramic interpenetrating phase compo-sites[J]. Materials Letters,2006,60(29-30):3723-3726. doi: 10.1016/j.matlet.2006.03.096
    [117] SAEID K, HAMID B, ROSHANAK L. The effect of calcination temperature on synthesis of B4C-nano Tib2 compo-site by co-precipitation method[J]. Oriental Journal of Chemistry,2016,32(4):2243-2249. doi: 10.13005/ojc/320457
    [118] TOMICZEK B, KUJAWA M, MATULA G, et al. Aluminium AlSi12 alloy matrix composites reinforced by mullite porous preforms[J]. Materialwissenschaft Und Werkstofftechnik,2015,46(4-5):368-376. doi: 10.1002/mawe.201500411
    [119] TIHAY F, POURROY G, RICHARD-PLOUET M, et al. Effect of fischer-tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials[J]. Applied Catalysis A General,2001,206(1):29-42. doi: 10.1016/S0926-860X(00)00595-0
    [120] YANG J Y, CHUNG D D L. Casting particulate and fibrous metal-matrix composites by vacuum infiltration of a liquid metal under an inert gas pressure[J]. Journal of Materials Science,1989,24:3605-3612. doi: 10.1007/BF02385746
    [121] BINNER J, CHANG H, HIGGINSON R. Processing of ceramic-metal interpenetrating composites[J]. Journal of the European Ceramic Society,2009,29(5):837-842. doi: 10.1016/j.jeurceramsoc.2008.07.034
    [122] LEE K B, KIM Y S, KWON H. Fabrication of Al-3 Wtpct Mg matrix composites reinforced with Al2O3 and SiC particulates by the pressureless infiltration technique[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,1998,29(12):3087-3095. doi: 10.1007/s11661-998-0216-9
    [123] ISAACS J A, TARICCO F, MICHAUD V J, et al. Chemical stability of zirconia-stabilized alumina fibers during pressure infiltration by aluminum[J]. Metallurgical Transactions A,1991,22(12):2855-2862. doi: 10.1007/BF02650246
    [124] ZHU J, WANG F, WANG Y, et al. Interfacial structure and stability of a co-continuous SiC/Al composite prepared by vacuum-pressure infiltration[J]. Ceramics International,2017,43(8):6563-6570. doi: 10.1016/j.ceramint.2017.02.085
    [125] JHAVER R, TIPPUR H. Processing, compression response and finite element modeling of syntactic foam based interpenetrating phase composite (IPC)[J]. Materials Science & Engineering A,2009,499(1-2):507-517.
    [126] YU L, JIANG Y L, RU H Q, et al. Microstructures of co-continuous SiC/Fe2Cr13 composite fabricated by vacuum-pressure casting and infiltration processes[J]. Advanced Materials Research,2011,239-242:1661-1664. doi: 10.4028/www.scientific.net/AMR.239-242.1661
    [127] XING H W, CAO X M, Hu W P, et al. Interfacial reactions in 3D-SiC network reinforced Cu-matrix composites prepared by squeeze casting[J]. Materials Letters,2005,59(12):1563-1566. doi: 10.1016/j.matlet.2005.01.023
    [128] REN W S, RAN G H, ZI W Y, et al. The fabrication method and research progress of the reticulated ceramic reinforcement in metal matrix composites[J]. Materials For Mechanical Engineering,2005,29(12):1-59.
    [129] QIN S S. Metal-matrix composites for marine applications: Development status and our countermeasures[J]. Materials Review,2003,17(10):68-70.
    [130] YAN H, YE H Y, CHEN W. Dry friction and wear performance of co-continuous Al-23Si/SiC composites[J]. Material Research Innovations,2015,19(9):131-135.
    [131] DIMIDUK D M, DUTTON R. Technical report OMB No. 0704-0188[R]. Washington: Materials and Manufacturing Directorate Air Force Research Laboratory, 2004.
    [132] PENG H X, FAN Z, EVANS J R G. Bi-continuous metal matrix composites[J]. Materials Science & Engineering A,2001,303(1-2):37-45.
    [133] SEITZ H, RIEDER W, IRSEN S, et al. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2010,74B(2):782-788.
    [134] LEE J Y, TAN W S, AN J, et al. The potential to enhance membrane module design with 3D printing technology[J]. Journal of Membrane ence,2016,499:480-490.
    [135] MOTAMAN S A H, KIES F, KHNEN P, et al. Optimal design for metal additive manufacturing: An integrated computational materials engineering (ICME) approach[J]. JOM,2020,72(3):1092-1104. doi: 10.1007/s11837-020-04028-4
    [136] POST G, KEESTRA M, RUTTING L. An introduction to interdisciplinary research[M]. Amsterdam: Amsterdam University Press, 2016: 20.
    [137] SWITHENBANK J. Some unresolved problems in the fluid mechanics of combustion[J]. Journal of Fluids Engineering,1975,97(3):287. doi: 10.1115/1.3447305
    [138] SURUJHLAL D, SKEWS B W. Three-dimensional shock wave reflection transition in steady flow[J]. Journal of Fluid Mechanics,2019,858:565-587. doi: 10.1017/jfm.2018.747
    [139] LUDMILA C. Performance modeling in mapreduce environments: Challenges and opportunities[C]//Proceedings of the 2nd ACM/SPEC International Conference on Performance Engineering. New York: Association for Computing Machinery, 2011: 5-6.
    [140] MOON S K, TAN Y E, HWAN J H, et al. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures[J]. International Journal of Precision Engineering & Manufacturing Green Technology,2014,1(3):223-228.
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  2738
  • HTML全文浏览量:  1050
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-16
  • 录用日期:  2020-08-28
  • 网络出版日期:  2020-09-10
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回