留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sn量子点/石墨烯复合材料的合成及储锂性能

沈丁 储诚议 王来贵 董伟 刘耀汉 李明月 杨绍斌

沈丁, 储诚议, 王来贵, 等. Sn量子点/石墨烯复合材料的合成及储锂性能[J]. 复合材料学报, 2021, 38(3): 863-870. doi: 10.13801/j.cnki.fhclxb.20200826.003
引用本文: 沈丁, 储诚议, 王来贵, 等. Sn量子点/石墨烯复合材料的合成及储锂性能[J]. 复合材料学报, 2021, 38(3): 863-870. doi: 10.13801/j.cnki.fhclxb.20200826.003
SHEN Ding, CHU Chengyi, WANG Laigui, et al. Synthesis and lithium storage properties of Sn quantum dots/graphene composite[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 863-870. doi: 10.13801/j.cnki.fhclxb.20200826.003
Citation: SHEN Ding, CHU Chengyi, WANG Laigui, et al. Synthesis and lithium storage properties of Sn quantum dots/graphene composite[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 863-870. doi: 10.13801/j.cnki.fhclxb.20200826.003

Sn量子点/石墨烯复合材料的合成及储锂性能

doi: 10.13801/j.cnki.fhclxb.20200826.003
基金项目: 国家自然科学基金(51874167;21808095);博士后面上基金(2018M641707)
详细信息
    通讯作者:

    杨绍斌,博士,教授,博士生导师,研究方向为新能源材料和矿物材料 E-mail:lgdysb@163.com

  • 中图分类号: TM911; O646

Synthesis and lithium storage properties of Sn quantum dots/graphene composite

  • 摘要: Sn基材料是目前高容量锂离子电池电极材料研究的热点,但循环性能较差阻碍了其大规模应用。以氧化石墨烯为载体,通过化学还原法在载体表面成功均匀负载<10 nm的Sn量子点,合成Sn量子点/石墨烯(SnQds/rGO)复合电极材料。结果表明,Sn质量分数为90wt%的SnQds/rGO复合材料具有良好的综合电化学性能,首次放电容量和库伦效率分别为939 mAh/g和66.6%,经过200次循环后容量可达621 mAh/g,容量保持率为66.1%。小尺寸的Sn量子点与石墨烯复合能够增强电极材料的结构稳定性和降低阻抗,改善电极材料的循环性能和倍率性能,但会导致首次库伦效率有所降低。

     

  • 图  1  纳米Sn金属和Sn量子点/石墨烯(SnQds/rGO)复合材料的XRD图谱

    Figure  1.  XRD spetra of nano Sn alloy and Sn quantum dot/graphene (SnQds/rGO) composites

    图  2  纳米Sn金属和SnQds/rGO复合材料的SEM图像: (a) 纳米金属Sn; (b) 95wt% Sn; (c) 90wt% Sn; (d) 85wt% Sn; (e) 80wt% Sn

    Figure  2.  SEM of nano Sn alloy and SnQds/rGO composite: (a) Nano Sn alloy; (b) 95wt% Sn; (c) 90wt% Sn; (d) 85wt% Sn; (e) 80wt% Sn

    图  3  Sn质量分数为90wt%的SnQds/rGO复合材料的微观结构: (a) TEM image; (b) HRTEM image; (c) 选区电子衍射图谱

    Figure  3.  Microstructure of SnQds/rGO composite with mass fraction of 90wt%: (a) TEM; (b) HRTEM; (c) Selected area electron diffraction pattern

    图  4  SnQds/rGO复合材料的合成示意图

    Figure  4.  Schematic of synthesis of SnQds/rGO composite

    GO—Graphene oxide; PVP—Polyvinyl pyrrolidone

    图  5  纳米Sn金属和SnQds/rGO复合材料的充放电曲线: (a)纳米Sn金属; (b) 95wt% Sn; (c) 90wt% Sn; (d) 85wt% Sn; (e) 80wt% Sn

    Figure  5.  Charge and discharge curves of nano Sn alloy and SnQds/rGO composites: (a) Nano Sn alloy; (b) 95wt% Sn; (c) 90wt% Sn; (d) 85wt% Sn; (e) 80wt% Sn

    图  6  纳米Sn金属和SnQds/rGO复合材料的循环性能和倍率性能:(a)循环性能; (b)库伦效率; (c)倍率性能

    Figure  6.  Cycle performance and rate performance of nano Sn alloy and SnQds/rGO composites: (a) Cycle performance; (b) Coulomb efficiency; (c) Multiplier performance

    图  7  纳米Sn金属(a)和Sn质量分数为90wt%的SnQds/rGO复合材料(b)的循环伏安曲线

    Figure  7.  Cyclic voltammetry curves of nano Sn alloy (a) and SnQds/rGO composite with Sn mass fraction of 90wt% (b)

    图  8  纳米Sn金属和Sn质量分数为90wt%的SnQds/rGO复合材料的交流阻抗曲线

    Figure  8.  Alternating current impedance curves of nano Sn alloy and SnQds/rGO composite with Sn mass fraction of 90wt%

  • [1] JAGUEMONT J, BOULON L, DUBE Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy,2016,164:99-114. doi: 10.1016/j.apenergy.2015.11.034
    [2] FERG E E, SCHULDT F, SCHMIDT J. The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave[J]. Journal of Power Sources,2019,423:380-403. doi: 10.1016/j.jpowsour.2019.03.063
    [3] YAN J, ZHANG J, SU Y C, et al. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries[J]. Electrochimica Acta,2010,55(5):1785-1794. doi: 10.1016/j.electacta.2009.10.068
    [4] MIYAZAKI R, HIHARA T. Charge-discharge performances of Sn powder as a high capacity anode for all-solid-state lithium batteries[J]. Journal of Power Sources,2019,427(1):15-20.
    [5] NITA C, FULLENWARTH J, MONCONDUIT L, et al. Understanding the Sn loading impact on the performance of mesoporous carbon/Sn-based nanocomposites in Li-ion batteries[J]. ChemElectrochem,2018,5(21):3249-3260.
    [6] lSARITHA D. A concise review on the advancement of anode materials for Li-ion batteries[J]. Materialstody: Proceedings,2019,19(2):726-730.
    [7] ZHENG Y, ZHAO M W, YONG C, et al. Sn-based intermetallic compounds for Li-ion batteries: structures, lithiation mechanism, and electrochemical performances[J]. Energy & Environmental Materials,2018,1(3):132-147.
    [8] 孟浩文, 马大千, 俞晓辉, 等. 锂离子电池锡-金属-碳复合负极材料[J]. 化学进展, 2015, 27(8):1110-1122.

    MENG Haowen, MA Daqian, YU Xiaohui, et al. Tin-metal-carbon composite anode materials for lithium ion batteries[J]. Progress in Chemistry,2015,27(8):1110-1122(in Chinese).
    [9] 刘欣, 解晶莹, 赵海雷, 等. 锂离子电池Sn30Co30C40三元合金负极材料的制备与性能研究[J]. 化学学报, 2013, 71(7):1011-1016. doi: 10.6023/A13030268

    LIU Xin, XIE Jingying, ZHAO Hailei, et al. Synthesis and properties of Sn30Co30C40 ternary alloy anode material for lithium ion battery[J]. Acta Chimica Sinica,2013,71(7):1011-1016(in Chinese). doi: 10.6023/A13030268
    [10] 白雪君, 侯敏, 刘婵, 等. 锂离子电池用三维氧化锡/石墨烯水凝胶负极材料[J]. 物理化学学报, 2017, 33(2):377-385. doi: 10.3866/PKU.WHXB201610272

    BAI Xuejun, HOU Min, LIU Chan, et al. 3D SnO2/graphene hydrogel anode material for lithium-ion battery[J]. Acta Physico-Chimica Sinica,2017,33(2):377-385(in Chinese). doi: 10.3866/PKU.WHXB201610272
    [11] NOWAK A P, TRZCIŃSKI K, SZKODA M, et al. Nano tin/tin oxide attached onto graphene oxide skeleton as a fluorine free anode material for lithium-ion batteries[J]. Inorganic Chemistry,2020,59(6):4150-4159. doi: 10.1021/acs.inorgchem.0c00318
    [12] ZHU J S, HU G Z, ZHANG J. Preparation of Sn-Cu-graphene nanocomposites with superior reversible lithium ion storage[J]. Materials Letters,2016,185:565-568. doi: 10.1016/j.matlet.2016.09.060
    [13] BIRROZZI A, MARONI F, RACCICHINI R, et al. Enhanced stability of SnSb/graphene anode through alternative binder and electrolyte additive for lithium ion batteries application[J]. Journal of Power Sources,2015,294:248-253. doi: 10.1016/j.jpowsour.2015.06.065
    [14] LIU X, LI N, YANG C, et al. Sn accommodation in tunable-void and porous graphene bumper for high-performance Li- and Na-ion storage[J]. Journal of Alloys and Compounds,2019,790:1043-1050. doi: 10.1016/j.jallcom.2019.03.258
    [15] BAZINA L, MITRAA S, TABERNA P L, et al. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries[J]. Journal of Power Sources,2009,188(2):578-582. doi: 10.1016/j.jpowsour.2008.12.025
    [16] EOM K, JUNG J, LEE J T, et al. Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery[J]. Nano Energy,2015,12:314-321. doi: 10.1016/j.nanoen.2014.12.041
    [17] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339. doi: 10.1021/ja01539a017
    [18] ZHU X, ZHU Y, MURALI S, et al. Nanostructured reduced grapheme oxide/Fe2O3 composite as a high performance anode material for lithium ion batteries[J]. ACS Nano,2011,5(4):3333-3338. doi: 10.1021/nn200493r
    [19] GAO L, WU G S, MA J, et al. SnO2 quantum dots@graphene framework as a high-performance flexible anode electrode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2020,12(11):12982-12989. doi: 10.1021/acsami.9b22679
    [20] 沈丁, 杨绍斌, 李思南, 等. 基于第一性原理Sn-Li合金嵌锂性能和弹性性能的计算与预测[J]. 中国有色金属学报, 2017, 27(2):282-288. doi: 10.19476/j.ysxb.1004.0609.2017.02.008

    SHEN Ding, YANG Shaobin, LI Sinan, et al. Calculation and prediction of lithium insertion properties and elastic properties for Sn-Li alloy based on first-principle calculation[J]. The Chinese Journal of Nonferrous Metals,2017,27(2):282-288(in Chinese). doi: 10.19476/j.ysxb.1004.0609.2017.02.008
    [21] ZHU J, WANG D, WANG L, et al. Facile synthesis of sulfur coated SnO2-graphene nanocomposites for enhanced lithium ion storage[J]. Electrochim Acta,2013,91(32):323-329.
    [22] 邓凌峰, 余开明, 严忠, 等. Co2+掺杂石墨烯/LiFePO4锂离子电池复合正极材料的制备与表征[J]. 复合材料学报, 2015, 32(5):1390-1398.

    DENG Lingfeng, YU Kaiming, YAN Zhong, et al. Preparation and characterization of Co2+ doped graphene/LiFePO4 composite cathode materials for lithium battery[J]. Acta Materiae Compositae Sinica,2015,32(5):1390-1398(in Chinese).
    [23] XU K Q, SHEN X P, YAN Z Y, et al. Cyanometallic framework-derived dual-buffer structure of Sn-Co based nanocomposites for high-performance lithium storage[J]. Journal of Alloys and Compounds,2020,830(9):154680.
    [24] GULER M O, GUZELER M, GULER A, et al. Intermetallic Ni3Sn4-based graphene@carbon hybrid composites for lithium-ion batteries[J]. International Journal of Energy Research,2018,42(9):2961-2970. doi: 10.1002/er.4040
    [25] 杨绍斌, 沈丁, 李强. Sn0.35−0.5xCo0.35−0.5xZnxC0.30复合材料的制备及电化学性能[J]. 金属学报, 2010, 46(1):6-12.

    YANG Shaobin, SHEN Ding, LI Qiang. Synthesis and electrochemical properties of Sn0.35−0.5xCo0.35−0.5xZnxC0.30 composite materials[J]. Acta Metallurgica Sinica,2010,46(1):6-12(in Chinese).
  • 加载中
图(8)
计量
  • 文章访问数:  915
  • HTML全文浏览量:  322
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 录用日期:  2020-08-19
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回