留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃纤维/环氧乙烯基酯树脂复合材料的层间增韧及其低温下低速冲击性能

康少付 李进 马鹏 周少雄 韩耀璋 张博明

康少付, 李进, 马鹏, 等. 玻璃纤维/环氧乙烯基酯树脂复合材料的层间增韧及其低温下低速冲击性能[J]. 复合材料学报, 2021, 38(1): 145-154. doi: 10.13801/j.cnki.fhclxb.20200824.003
引用本文: 康少付, 李进, 马鹏, 等. 玻璃纤维/环氧乙烯基酯树脂复合材料的层间增韧及其低温下低速冲击性能[J]. 复合材料学报, 2021, 38(1): 145-154. doi: 10.13801/j.cnki.fhclxb.20200824.003
KANG Shaofu, LI Jin, MA Peng, et al. Interlaminar toughening of glass fiber/epoxy vinyl ester resin composite and its low-velocity impact properties at low temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 145-154. doi: 10.13801/j.cnki.fhclxb.20200824.003
Citation: KANG Shaofu, LI Jin, MA Peng, et al. Interlaminar toughening of glass fiber/epoxy vinyl ester resin composite and its low-velocity impact properties at low temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 145-154. doi: 10.13801/j.cnki.fhclxb.20200824.003

玻璃纤维/环氧乙烯基酯树脂复合材料的层间增韧及其低温下低速冲击性能

doi: 10.13801/j.cnki.fhclxb.20200824.003
基金项目: 宁夏自治区重点研发项目 (2018BDE02048)
详细信息
    通讯作者:

    李进,博士,教授,博士生导师,研究方向为复合材料力学 E-mail:li-jin@163.com

  • 中图分类号: TB332

Interlaminar toughening of glass fiber/epoxy vinyl ester resin composite and its low-velocity impact properties at low temperature

  • 摘要: 采用真空辅助成型工艺(VARI)制备了四种无纺布(聚酰胺(PA)、聚氨酯弹性体橡胶(TPU)、乙烯-醋酸乙烯共聚物(EVA)、共聚酯(PEs))层间改性的玻璃纤维/环氧乙烯基酯树脂(GF/EVER)复合材料层合板。在温度为20℃下进行落锤冲击实验,对比分析了不同层间改性的GF/EVER复合材料层合板的低速冲击响应特性和抗冲击性能;利用超声C扫描和SEM分析了其冲击损伤机制。通过对复合材料层合板的冲击损伤面积、凹坑深度、最大接触力、冲击后剩余压缩强度(CAI)值的对比分析可知,经TPU和PEs无纺布层间改性的GF/EVER复合材料抗冲击性能较佳。不同的无纺布和基体树脂生成的界面相与纤维的结合程度不尽相同。层间改性的GF/EVER复合材料的冲击损伤机制为冲击正面表层基体树脂的开裂,其内部的分层和冲击背面的分层劈裂或纤维断裂;同时,进一步研究了经TPU和PEs改性的GF/EVER复合材料在低温下(−100℃和−45℃)的低速冲击性能,结果表明,随着温度的降低,GF/EVER复合材料的冲击损伤面积随之增大,CAI值随之减小,这可能是GF/EVER复合材料在低温下层间残余热应力和基体树脂脆化效应综合作用的结果。

     

  • 图  1  共聚酯(PEs)无纺布微观结构

    Figure  1.  Microstructure of co-polyester (PEs) nonwoven fabric

    图  2  低速冲击试样背面最大损伤面积计算方法

    Figure  2.  Calculation method of maximum damage area on back of impact specimens

    图  3  未层间增韧和层间增韧的GF/EVER复合材料在20℃时的接触力-时间曲线

    Figure  3.  Contact force-time curves of GF/EVER composites without and with interlaminar toughening at 20℃

    图  4  未层间增韧和层间增韧的GF/EVER复合材料在20℃时的接触力-位移曲线

    Figure  4.  Contact force-displacement curves of GF/EVER composites without and with interlaminar toughening at 20℃

    图  5  层间增韧的GF/EVER复合材料在20℃时的凹坑深度和最大损伤面积

    Figure  5.  Maximum damage area and dent depth of GF/EVER composites with interlaminar toughening at 20℃

    图  6  层间增韧的GF/EVER复合材料在20℃下的最大接触力

    Figure  6.  Maximum contact force of GF/EVER composites with interlaminar toughening at 20℃

    图  7  层间增韧的GF/EVER复合材料在20℃下低速冲击过程中的能量-时间曲线

    Figure  7.  Energy-time curves of GF/EVER composites with interlaminar toughening during low velocity impact at 20℃

    Ei—Total impact energy; Ea—Absorbed energy; Ee—Elastic energy

    图  8  层间增韧的GF/EVER复合材料的能量吸收系数

    Figure  8.  Energy absorption coefficient of GF/EVER composites with interlaminar toughening

    图  9  层间增韧的GF/EVER复合材料冲击后的剩余压缩强度

    Figure  9.  Compressive residual strength of GF/EVER composites with interlaminar toughening after impact

    图  10  层间增韧的GF/EVER复合材料低速冲击后在20℃时的正面、背面及超声C扫描图像

    Figure  10.  Front and back surface morphologies and ultrasonic C-scan images of GF/EVER composites with interlaminar toughening after low velocity impact at 20℃

    图  11  未层间增韧和层间增韧的GF/EVER复合材料分层断裂面的SEM图像

    Figure  11.  SEM images of interlaminar fracture surfaces of GF/EVER composites without and with interlaminar toughening

    图  12  GF/EVER-TPU和GF/EVER-PEs复合材料在−100℃、−45℃、20℃下低速冲击后的损伤面积

    Figure  12.  Damage area of GF/EVER-TPU and GF/EVER-PEs composites at −100℃, −45℃ and 20℃ after low velocity impact

    图  13  GF/EVER-TPU和GF/EVER-PEs复合材料在−100℃、−45℃、20℃下冲击后剩余压缩强度

    Figure  13.  Residual compressive strength of GF/EVER-TPU and GF/EVER-PEs composites at −100℃, −45℃, and 20℃ after impact

    表  1  玻璃纤维/环氧乙烯基酯树脂(GF/EVER)复合材料的编号、铺层方式、层合板厚度、纤维体积含量及无纺布的含量

    Table  1.   Layer configuration, thickness, fiber volume fraction and mass fraction of nonwoven fabrics of glass fiber/epoxy vinyl ester resin (GF/EVER) composite

    SampleLayer configurationT/mmVf/vol%Wnf/wt%
    GF/EVER [0/90]4S 2.79 51.1 0
    GF/EVER-PA [0/PA/90]4S 4.01 47.8 1.02
    GF/EVER-TPU [0/TPU/90]4S 3.96 49.7 1.04
    GF/EVER-EVA [0/EVA/90]4S 4.20 46.3 1.33
    GF/EVER-PEs [0/PEs/90]4S 3.95 48.4 1.00
    Notes: T—Thickness of laminates; Vf—Fiber volume fraction; Wnf—Mass fraction of nonwoven fabrics in resin system; PA—Polyamide; TPU—Polyurethane; EVA— Vinyl ester copolymer; PEs—Co-polyester.
    下载: 导出CSV
  • [1] 宋传江, 王虎. 玻璃纤维增强复合材料工程化应用进展[J]. 中国塑料, 2015, 29(3):9-15.

    SONG Chuanjiang, WANG Hu. Engineering application research of glass fiber reinforced composite materials[J]. China Plastics,2015,29(3):9-15(in Chinese).
    [2] 张宏军, 周晓东, 戴干策, 等. 玻璃纤维增强乙烯基酯树脂复合材料的增韧[J]. 高分子材料科学与工程, 2005, 21(3):21-25.

    ZHANG Hongjun, ZHOU Xiaodong, DAI Gance, et al. Toughening glass fiber reinforced vinyl ester reisin composite[J]. Polymer Materials Science and Engineerin,2005,21(3):21-25(in Chinese).
    [3] 徐颖, 温卫东, 崔海坡. 复合材料层合板低速冲击逐渐累积损伤预测方法[J]. 材料科学与工程学报, 2006, 24(1):77-81.

    XU Ying, WEN Weidong, CUI Haipo. A cumulative damage prediction method of low-velocity impacts on laminated composites[J]. Journal of Materials Science & Engineering,2006,24(1):77-81(in Chinese).
    [4] HE Y, LI Q, KUILA T, et al. Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications[J]. Composites Part B: Engineering,2013,44(1):533-539. doi: 10.1016/j.compositesb.2012.03.014
    [5] AKANGAH P, LINGAIAH S, SHIVAKUMAR K. Effect of nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates[J]. Composite Structures,2010,92(6):1432-1439. doi: 10.1016/j.compstruct.2009.11.009
    [6] DAELEMANS L. Interlaminar toughening of composite laminates by electrospun nanofibrous interleaves[D]. Ghent: Ghent University, 2017.
    [7] BOYD S E, BOGETTI T A, STANISZEWSKI J M, et al. Enhanced delamination resistance of thick-section glass-epoxy composite laminates using compliant thermoplastic polyurethane interlayers[J]. Composite Structures,2018,189:184-191.
    [8] 姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5):1083-1091.

    YAO Jiawei, LIU Mengyao, NIU Yifan. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(5):1083-1091(in Chinese).
    [9] SAZ-OROZCO B D, RAY D, STANLEY W F, et al. Effect of thermoplastic veils on interlaminar fracture toughness of a glass fiber/vinyl ester composite[J]. Polymer Composites,2015,38(11):1-8.
    [10] KUWATA M, HOGG P J. Interlaminar toughness of interleaved CFRP using non-woven veils Part 1: Mode-Ⅰ testing[J]. Composites Part A: Applied Science and Manufacturing,2011,42(10):1551-1559. doi: 10.1016/j.compositesa.2011.07.016
    [11] NASH N H, YOUNG T M, MCGRAIL P T, et al. Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composite: A review[J]. Materials & Design,2015,85(15):582-597.
    [12] KUWATA M, HOGG P J. Interlaminar toughness of interleaved CFRP using non-woven veils Part 2: Mode-Ⅱ testing[J]. Composites Part A: Applied Science and Manufacturing,2011,42(10):1560-1570.
    [13] 马鹏, 李进, 康少付, 等. 不同无纺布对玻纤/乙烯基酯复合材料力学性能的影响[J]. 复合材料科学与工程, 2020(5):69-73.

    MA Peng, LI Jin, KANG Shaofu, et al. Effect of different non-woven fabrics on mechanical properties of glass fiber/vinyl ester composites[J]. Composites Science and Engineering,2020(5):69-73(in Chinese).
    [14] IBEKWE S I, MENSAH P F, LI G, et al. Impact and post impact response of laminated beams at low temperatures[J]. Composite Structures,2007,79(1):12-17. doi: 10.1016/j.compstruct.2005.11.025
    [15] ICTEN B M, ATAS C, AKATAS M, et al. Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates[J]. Composite Structures,2009,91(3):318-323. doi: 10.1016/j.compstruct.2009.05.010
    [16] RIO T G, ZAERA R, BARBERO E, et al. Damage in CFRPs due to low velocity impact at low temperature[J]. Composites Part B: Engineering,2005,36(1):41-50. doi: 10.1016/j.compositesb.2004.04.003
    [17] ASTM International. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137M—17[S]. West Conshohocken: ASTM International, 2017.
    [18] CARTIÉ D D R, IRVING P E. Effect of resin and fibre properties on impact and compression after impact performance of CFRP[J]. Composites Part A: Applied Science and Manufacturing,2002,33(4):483-493. doi: 10.1016/S1359-835X(01)00141-5
    [19] REDDY T S, REDDY P R S, MASHU V. Low velocity impact studies of E-glass/epoxy composite laminates at different thicknesses and temperatures[J]. Defence Technology,2019,15(6):897-904. doi: 10.1016/j.dt.2019.02.003
    [20] KWON S Y, SANKAR B V. Indentation flexure and low velocity impact damage in graphite epoxy laminates[J]. Journal of Composites Technology and Research,2010,15(2):101-111.
    [21] 沈真, 张子龙, 王进, 等. 复合材料损伤阻抗和损伤容限的性能表征[J]. 复合材料学报, 2004, 21(5):140-145.

    SHEN Zhen, ZHANG Zilong, WANG Jin, et al. Characterization of damage resistance and damage tolerance behavior of composite materials[J]. Acta Materiae Compositae Sinica,2004,21(5):140-145(in Chinese).
    [22] NOR A F M, SULTAN M T H, JAWAID M, et al. Analyzing impact properties of CNT filled bam-boo/glass hybrid nano-composites through drop-weight impact testing, UWPI and compression-after-impact behavior[J]. Composites Part B: Engineering,2019,168:166-174. doi: 10.1016/j.compositesb.2018.12.061
    [23] SHEN Y, JIANG B, LI Y, et al. Low velocity impact response and energy absorption behavior on glass fibre reinforced epoxy composites[J]. Science China Technological Sciences,2017,60(9):1339-1346. doi: 10.1007/s11431-016-9061-3
    [24] 董慧民, 安学锋, 益小苏, 等. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5):89-100.

    DONG Huimin, AN Xuefeng, YI Xiaosu, et al. Progress in research on low velocity impact properties of fiber reinforced polymer matrix composite[J]. Journal of Materials Engineering,2015,43(5):89-100(in Chinese).
    [25] AKTAS M, ATAS C, ICTEN B M, et al. An experimental investigation of the impact response of composite laminates[J]. Composite Structures,2009,87(4):307-313. doi: 10.1016/j.compstruct.2008.02.003
    [26] JOSHI S P, SUN C T. Impact induced fracture in a laminated composite[J]. Journal of Composite Materials,1985,19(1):51-66. doi: 10.1177/002199838501900104
    [27] 张朋, 刘刚, 胡晓兰, 等. 结构化增韧层增韧RTM复合材料性能[J]. 复合材料学报, 2012, 29(4):1-9.

    ZHANG Peng, LIU Gang, HU Xiaolan, et al. Properties of toughened RTM composites by structural toughening layer[J]. Acta Materiae Compositae Sinica,2012,29(4):1-9(in Chinese).
    [28] 杨志磊. 环氧/热塑性丙烯酸树脂共混体系反应诱导相分离的研究[D]. 镇江: 江苏科技大学, 2013.

    YANG Zhilei. Research of reaction induced phase separation in epoxy systems modified by thermoplastic acrylic resin[D]. Zhenjiang: Jiangsu University of Science and Technology, 2013(in Chinese).
    [29] 张秀娟, 益小苏, 许元泽. 不同热塑性树脂改性热固性树脂体系反应[J]. 高分子学报, 2007(8):725-730.

    ZHANG Xiujuan, YI Xiaosu, XU Yuanze. The time/temperature relationship during phase separation of different thermoplastic modified thermosetting systems[J]. Acta Polymerica Sinica,2007(8):725-730(in Chinese).
    [30] 刘小云, 余英丰, 甘文君, 等. 热塑性树脂改性热固性树脂体系固化反应诱导相分离研究进展[J]. 材料导报, 2007, 21(4):34-40, 55.

    LIU Xiaoyun, YU Yingfeng, GAN Wenjun, et al. The progress in the research on polymerization-induced phase separation of thermoplastic resin modified thermoset resin[J]. Materials Review,2007,21(4):34-40, 55(in Chinese).
    [31] ICTEN B M. Low temperature effect on single and repeated impact behavior of woven glass-epoxy composite plates[J]. Journal of Composite Materials,2005,49(10):1171-1178.
    [32] SALEHI-KHOJIN A, BASHIRZADEH R, MAHINFALAH M, et al. The role of temperature on impact properties of Kevlar/fiberglass composite laminates[J]. Composites Part B: Engineering,2006,37(78):593-602.
    [33] 江先龙, 顾浩, 钱永嘉, 等. 乙烯基酯树脂低温特性研究[J]. 热固性树脂, 2013, 28(6):49-51.

    JIANG Xianlong, GU Hao, QIAN Yongjia, et al. Study on the properties of vinyl ester resin at low temperature[J]. Thermosetting Resin,2013,28(6):49-51(in Chinese).
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1496
  • HTML全文浏览量:  580
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 录用日期:  2020-08-21
  • 网络出版日期:  2020-08-24
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回