留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于空气过滤的改性大豆蛋白-细菌纤维素复合材料的制备及性能

贺玮 刘晓彤 郑裕东 王慧颖 谢亚杰 冯照喧 王岩森 刘晓冰

贺玮, 刘晓彤, 郑裕东, 等. 用于空气过滤的改性大豆蛋白-细菌纤维素复合材料的制备及性能[J]. 复合材料学报, 2021, 38(3): 843-853. doi: 10.13801/j.cnki.fhclxb.20200727.001
引用本文: 贺玮, 刘晓彤, 郑裕东, 等. 用于空气过滤的改性大豆蛋白-细菌纤维素复合材料的制备及性能[J]. 复合材料学报, 2021, 38(3): 843-853. doi: 10.13801/j.cnki.fhclxb.20200727.001
HE Wei, LIU Xiaotong, ZHENG Yudong, et al. Preparation and properties of modified soy protein-bacterial cellulose composites for air filtration[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 843-853. doi: 10.13801/j.cnki.fhclxb.20200727.001
Citation: HE Wei, LIU Xiaotong, ZHENG Yudong, et al. Preparation and properties of modified soy protein-bacterial cellulose composites for air filtration[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 843-853. doi: 10.13801/j.cnki.fhclxb.20200727.001

用于空气过滤的改性大豆蛋白-细菌纤维素复合材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20200727.001
基金项目: 国家自然科学基金(31700829;51973018;51773018);北京市科技计划项目(Z191100002019017)
详细信息
    通讯作者:

    郑裕东,博士,教授,博士生导师,研究方向为生物医用材料 E-mail:zhengyudong@mater.ustb.edu.cn

  • 中图分类号: TB332

Preparation and properties of modified soy protein-bacterial cellulose composites for air filtration

  • 摘要: 采用大豆蛋白和细菌纤维素(BC)为原材料,制备环保型空气过滤复合材料,用于过滤污染空气。首先,采用Nagano法对大豆蛋白进行提纯和成分分离,得到溶解度较高的7S和11S成分。然后,用丙烯酸对大豆分离蛋白(SPI)、7S和11S进行改性处理,使埋藏于大豆蛋白内部的官能团充分暴露。最后,将处理后的大豆蛋白与BC复合,制备出改性大豆蛋白-BC (MSPI-BC、M7S-BC和M11S-BC)复合材料。评估了改性大豆蛋白-BC复合材料的微观形貌及其对污染空气的过滤效率、吸附性能和透气性等。结果表明,MSPI在BC中分布极为不均匀,在多处产生聚集;而M7S和M11S蛋白均匀包覆在BC表面,无聚集现象。MSPI-BC、M7S-BC和M11S-BC复合材料对PM2.5的过滤效率分别为73.07%±0.02%、82.13%±0.01%和85.44%±0.02%。与MSPI-BC复合材料相比,M7S-BC和M11S-BC复合材料对空气中颗粒污染物的吸附量更大。本文制备出的改性大豆蛋白-BC复合材料结构稳定,具有较高的过滤效率,且环保无污染,在空气过滤领域有广阔的应用价值。

     

  • 图  1  改性大豆蛋白(MSPI、M7S和M11S)-细菌纤维素(BC)复合材料通过高活性纤维表面过滤空气污染物示意图

    Figure  1.  Schematic of modified soy protein (MSPI, M7S and M11S)-bacterial cellulose (BC) composites capturing pollutants via highly active fiber surface

    图  2  检测设备示意图: (a)吸附性测试; (b)过滤效率测试;(c)透气性测试

    Figure  2.  Schematic of testing procedures: (a) adsorption capacity test; (b) air filtration efficiency test; (c) air penetration test

    图  3  丙烯酸处理前后大豆蛋白溶液的照片

    Figure  3.  Photographs of acrylic acid treated and non-treated soy protein solution

    图  4  丙烯酸改性前后大豆蛋白的FTIR图谱

    Figure  4.  FTIR spectra of soy protein before and after denaturation in acrylic acid

    图  5  丙烯酸改性前后大豆蛋白的Zeta电位

    Figure  5.  Zeta potential of soy protein solution before and after acrylic acid treatment

    图  6  过丙烯酸改性大豆蛋白-BC复合材料的SEM图像

    Figure  6.  SEM images of acrylic acid modified soy protein-BC composites

    图  7  丙烯酸改性大豆蛋白-BC复合材料的吸附性能

    Figure  7.  Absorption capacity of acrylic acid modified soy protein-BC composites

    图  8  过滤测试后丙烯酸改性大豆蛋白-BC复合材料的SEM图像

    Figure  8.  SEM images of acrylic acid modified soy protein-BC composites after filtration test

    图  9  过滤测试前后丙烯酸改性大豆蛋白-BC的FTIR图谱

    Figure  9.  FTIR spectra of acrylic acid modified soy protein-BC composites before and after filtration testing

    表  1  改性大豆蛋白-BC复合材料配比

    Table  1.   Proportion of modified soy protein-BC composites

    SampleSoy protein/wt%BC/wt%
    MSPI-BC 7.41 92.59
    M7S-BC 44.44 55.56
    M11S-BC 44.44 55.56
    下载: 导出CSV

    表  2  丙烯酸改性大豆蛋白-BC复合材料的空气过滤效率和透气性

    Table  2.   Air filtration efficiency and penetration rate of acrylic acid modified soy protein-BC composites

    SampleAir filtration efficiency/%Penetration rate/%Areal density/
    (g·m−2)
    MSPI-BC 73.07±0.02 65.42±0.30 103±5
    M7S-BC 82.13±0.01 64.72±0.30 105±5
    M11S-BC 85.44±0.02 67.50±0.40 98±4
    下载: 导出CSV
  • [1] LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications,2015,6:6205. doi: 10.1038/ncomms7205
    [2] MIASKIEWICZ-PESKA E, LEBKOWSKA M. Comparison of aerosol and bioaerosol collection on air filters[J]. Aerobiologia,2012,28(2):185-193. doi: 10.1007/s10453-011-9223-1
    [3] 石小丽, 潘倩倩. 复合高效空气过滤非织造材料的制备及其性能[J]. 实验室研究与探索, 2011, 30(9):35-38. doi: 10.3969/j.issn.1006-7167.2011.09.011

    SHI X L, PAN Q Q. Preparation and properties of tier composite nonwovens for high efficiency air filtration[J]. Research and Exploration in Laboratory,2011,30(9):35-38(in Chinese). doi: 10.3969/j.issn.1006-7167.2011.09.011
    [4] LUBASOVA D, NETRAVALI A, PARKER J, et al. Bacterial filtration efficiency of green soy protein based nanofiber air filter[J]. Journal of Nanoscience & Nanotechnology,2014,14(7):4891-4898.
    [5] PENG I C, QUASS D W, DAYTON W R, et al. The physicochemical and functional properties of soybean 11S globulin: A review[J]. Cereal Chemistry,1984,61(6):480-490.
    [6] 周瑞宝, 周兵. 大豆7S和11S球蛋白的结构和功能性质[J]. 中国粮油学报, 1998, 13(6):39-42. doi: 10.3321/j.issn:1003-0174.1998.06.011

    ZHOU R B, ZHOU B. The structure and functional properties of soybean 7S and 11S globulin proteins[J]. Journal of the Chinese Cereals and Oils Association,1998,13(6):39-42(in Chinese). doi: 10.3321/j.issn:1003-0174.1998.06.011
    [7] SAMOTO M, MAEBUCHI M, MIYAZAKI C, et al. Abundant proteins associated with lecithin in soy protein isolate[J]. Food Chemistry,2007,102(1):317-322. doi: 10.1016/j.foodchem.2006.05.054
    [8] SIRISON J, MATSUMIYA K, SAMOTO M, et al. Solubility of soy lipophilic proteins: Comparison with other soy protein fractions[J]. Bioscience Biotechnology & Biochemistry,2017,81(4):790-802.
    [9] KUMAR R, CHOUDHARY V, MISHRA S, et al. Adhesives and plastics based on soy protein products[J]. Industrial Crops & Products,2002,16(3):155-172.
    [10] SALAS C, AGO M, LUCIA L A, et al. Synthesis of soy protein-lignin nanofibers by solution electrospinning[J]. Reactive & Functional Polymers,2014,85:221-227.
    [11] ZHAO S, YAO J, FEI X, et al. An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate[J]. Materials Letters,2013,95(3):142-144.
    [12] SANTOS T C, HORING B, REISE K, et al. In vivo performance of chitosan/soy-based membranes as wound dressing devices for acute skin wounds[J]. Tissue Engineering Part A,2013,19(7-8):860-869. doi: 10.1089/ten.tea.2011.0651
    [13] 刘杰, 周浩, 黄郁芳, 等. 聚乙二醇化学改性的大豆分离蛋白凝胶[J]. 高等学校化学学报, 2018, 39(2):390-396. doi: 10.7503/cjcu20170449

    LIU J, ZHOU H, HUANG Y F, et al. Polyethylene glycol chemically modified soy protein isolate hydrogel[J]. Chemical Journal of Chinese Universities,2018,39(2):390-396(in Chinese). doi: 10.7503/cjcu20170449
    [14] CHENG X, ZENG X, LI D, et al. TPGS-grafted and acid-responsive soy protein nanogels for efficient intracellular drug release, accumulation, penetration in 3D tumor spheroids of drug-resistant cancer cells[J]. Materials Science & Engineering C: Materials for Biological Applications,2019,102:863-875.
    [15] ZHAO Y, HE M, ZHAO L, et al. Epichlorohydrin-cross-linked hydroxyethyl cellulose/soy protein isolate composite films as biocompatible and biodegradable implants for tissue engineering[J]. ACS Applied Materials & Interfaces,2016,8(4):2781-2795.
    [16] SOUZANDEH H, JOHNSON K S, WANG Y, et al. Soy-protein-based nanofabrics for highly efficient and multifunctional air filtration[J]. ACS Applied Materials & Interfaces,2016,8(31):20023-20031.
    [17] SHAH N, UI-ISLAM M, KHATTAK W A, et al. Overview of bacterial cellulose composites: A multipurpose advanced material[J]. Carbohydrate Polymers,2013,98(2):1585-1598. doi: 10.1016/j.carbpol.2013.08.018
    [18] LIU X, SOUZANDEH H, ZHENG Y, et al. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration[J]. Composites Science and Technology,2017,138:124-133. doi: 10.1016/j.compscitech.2016.11.022
    [19] NAGANO T, HIROTSUKA M, MORI H, et al. Dynamic viscoelastic study on the gelation of 7 S globulin from soybeans[J]. Journal of Agricultural & Food Chemistry,1992,40(6):941-944.
    [20] LIN T C, KRISHNASWAMY G, CHI D S. Incense smoke: Clinical, structural and molecular effects on airway disease[J]. Clinical and Molecular Allergy,2008,6(1):3. doi: 10.1186/1476-7961-6-3
    [21] TIAN H, XU G, YANG B, et al. Microstructure and mechanical properties of soy protein/agar blend films: Effect of composition and processing methods[J]. Journal of Food Engineering,2011,107(1):21-26. doi: 10.1016/j.jfoodeng.2011.06.008
    [22] WANG Z, ZHOU J, WANG X X, et al. The effects of ultrasonic/microwave assisted treatment on the water vapor barrier properties of soybean protein isolate-based oleic acid/stearic acid blend edible films[J]. Food Hydrocolloids,2014,35:51-58. doi: 10.1016/j.foodhyd.2013.07.006
    [23] 程宝箴, 范志婕, 张海丽. 丙烯酸改性废革屑胶原蛋白的研究[J]. 皮革科学与工程, 2014, 24(5):10-15.

    CHENG B Z, FAN Z J, ZHANG H L. Research of the collagen modified from leather waste by acrylic acids[J]. Leather Science and Engineering,2014,24(5):10-15(in Chinese).
    [24] CHO D, NAYDICH A, FREY M W, et al. Further improvement of air filtration efficiency of cellulose filters coated with nanofibers via inclusion of electrostatically active nanoparticles[J]. Polymer,2013,54(9):2364-2372. doi: 10.1016/j.polymer.2013.02.034
    [25] 顾振宇, 江美都, 付道才, 等. 大豆分离蛋白乳化性的研究[J]. 中国粮油学报, 2000, 15(2):32-35. doi: 10.3321/j.issn:1003-0174.2000.02.008

    GU Z Y, JIANG M D, FU D C, et al. Study on emulsifying properties of soy protein isolate[J]. Journal of the Chinese Cereals and Oils Association,2000,15(2):32-35(in Chinese). doi: 10.3321/j.issn:1003-0174.2000.02.008
    [26] JOHNSON T J, OLFERT J S, CABOT R, et al. Transient measurement of the effective particle density of cigarette smoke[J]. Journal of Aerosol Science,2015,87:63-74. doi: 10.1016/j.jaerosci.2015.05.006
    [27] WRIGHT C. Standardized methods for the regulation of cigarette-smoke constituents[J]. Trends in Analytical Chemistry,2015,66:118-127. doi: 10.1016/j.trac.2014.11.011
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1082
  • HTML全文浏览量:  390
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 录用日期:  2020-07-09
  • 网络出版日期:  2020-07-27
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回