留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

疲劳荷载对橡胶混凝土损伤和断裂性能的影响

刘妙燕 陆俊 明攀 刘决丁

刘妙燕, 陆俊, 明攀, 等. 疲劳荷载对橡胶混凝土损伤和断裂性能的影响[J]. 复合材料学报, 2021, 38(5): 1594-1603. doi: 10.13801/j.cnki.fhclxb.20200723.004
引用本文: 刘妙燕, 陆俊, 明攀, 等. 疲劳荷载对橡胶混凝土损伤和断裂性能的影响[J]. 复合材料学报, 2021, 38(5): 1594-1603. doi: 10.13801/j.cnki.fhclxb.20200723.004
LIU Miaoyan, LU Jun, MING Pan, et al. Effect of fatigue load on damage and fracture properties of rubber concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1594-1603. doi: 10.13801/j.cnki.fhclxb.20200723.004
Citation: LIU Miaoyan, LU Jun, MING Pan, et al. Effect of fatigue load on damage and fracture properties of rubber concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1594-1603. doi: 10.13801/j.cnki.fhclxb.20200723.004

疲劳荷载对橡胶混凝土损伤和断裂性能的影响

doi: 10.13801/j.cnki.fhclxb.20200723.004
基金项目: 国家重点研发计划课题(2016YFC0401902);中组部特殊人才支持计划项目(Go419001)
详细信息
    通讯作者:

    陆俊,博士,教授级高级工程师,研究方向为水工结构服役性态诊断与性能提升 E-mail:lujun@nhri.cn

  • 中图分类号: TU377.9;TU371+.2

Effect of fatigue load on damage and fracture properties of rubber concrete

  • 摘要: 虽然橡胶混凝土塑性和疲劳性能较好,但由于掺入橡胶,其在疲劳荷载下离散性增大,损伤过程及最终的断裂机制均不明确。为研究橡胶混凝土在疲劳荷载下的损伤和断裂性能,基于声发射开展了不同橡胶掺量的混凝土在疲劳荷载下的三点弯曲疲劳断裂试验。计算有效裂缝长度,分析疲劳荷载下不同橡胶掺量的混凝土裂缝长度a的变化规律,并利用裂缝长度a和声发射累积能量EAE分别定义了损伤变量DaDAE;分析疲劳荷载下不同橡胶掺量的混凝土断裂能GF的变化规律;利用声发射中的信号持续时间分析疲劳荷载下橡胶混凝土中裂缝出现和扩展的规律。结果表明,混凝土的断裂能随橡胶掺量的增加呈线性增加;在疲劳荷载下,裂缝长度aDa均呈倒S型规律变化,而DAE呈正S型规律变化;声发射信号持续时间表明,在疲劳荷载下,橡胶混凝土中的裂缝总在荷载较小时出现或发生扩展。

     

  • 图  1  试验装置及加载波形

    Figure  1.  Experiment device and load waveform

    图  2  不同橡胶含量的橡胶混凝土的荷载-挠度曲线

    Figure  2.  Force-displacement curves of rubber concrete with different rubber contents

    图  3  不同橡胶含量的橡胶混凝土的荷载-裂缝口张开位移曲线

    Figure  3.  Force-crack mouth opening displacement curves of rubber concrete with different rubber contents

    图  4  不同橡胶含量的橡胶混凝土裂缝长度-时间曲线

    Figure  4.  Crack length-time curves of rubber concrete with different rubber contents

    图  5  不同橡胶含量的橡胶混凝土损伤变量-时间曲线

    Figure  5.  Damage variable-time curves of rubber concrete with different rubber contents

    图  6  疲劳荷载下不同橡胶掺量的橡胶混凝土的荷载-挠度曲线

    Figure  6.  Force-displacement curves of rubber concrete with different rubber contents under fatigue load

    图  7  不同橡胶掺量的橡胶混凝土的断裂能-时间曲线

    Figure  7.  Fracture energy-time curves of rubber concrete with different rubber contents

    图  8  橡胶混凝土的声发射累积能量-橡胶掺量曲线

    Figure  8.  Acoustic emission cultivate energy-rubber content curves of rubber concrete

    图  9  不同橡胶掺量的橡胶混凝土荷载-时间及持续时间-时间曲线

    Figure  9.  Load-time and duration-time curves of rubber concrete with different rubber contents

    表  1  橡胶混凝土配比

    Table  1.   Mix proportion of rubber concrete

    SampleCement/kgFly ash/kgSiC powder of high purity/kgGravel/kgFine aggregate/kgWater/kgWater reducer/kg
    SandRubber
    RC0 20.56 7.44 1.38 42.64 54.32 0 10.64 0.4
    RC10 20.56 7.44 1.38 42.64 48.80 5.44 10.64 0.4
    RC20 20.56 7.44 1.38 42.64 43.44 10.88 10.64 0.4
    下载: 导出CSV

    表  2  不同橡胶含量的橡胶混凝土三点弯曲试验结果

    Table  2.   Three point bending test results of rubber concrete with different rubber contents

    Rubber contentPmax/kNfmax/MPaE/GPa
    0wt% 6.932 3.12 38.81
    7.301 3.29 50.00
    7.160 3.22 48.01
    Average 7.131 3.21 45.60
    Standard deviation 0.152 0.07 4.87
    10wt% 6.084 2.74 30.22
    5.723 2.58 39.00
    5.780 2.60 42.24
    Average 5.862 2.63 37.15
    Standard deviation 0.158 0.07 5.08
    20wt% 4.889 2.20 24.81
    4.556 2.05 27.50
    4.965 2.23 30.98
    Average 4.803 2.16 27.76
    Standard deviation 0.178 0.08 2.53
    Notes: Pmax—Maximum load that specimen can bear; fmax—Bending strength; E—Elastic modulus.
    下载: 导出CSV

    表  3  不同橡胶含量的橡胶混凝土三点弯曲疲劳试验结果

    Table  3.   Three point bending fatigue test results of rubber concrete with different rubber contents

    SampleSpecimen numberFatigue life NFracture energy Gf/(kN·m−1)Acoustic emission cultivate energy GAE
    RC0 1 130 1.73 25491
    2 104 0.94 28783
    3 71 0.71 28581
    Average 102 1.13 27618
    Standard deviation 24 0.43 1507
    RC10 1 130 1.03 20118
    2 23 0.38 40939
    3 1188 6.92 27581
    4 342 2.61 40496
    5 2041 8.85 1841
    6 8470 44.10 16849
    Average 2033 10.65 24637
    Standard deviation 2963 17.09 13703
    RC20 1 4354 22.68 42850
    2 16557 87.16 70
    3 75 0.66 32093
    4 9730 46.55 1026
    5 728 4.55 28030
    6 1820 11.34 21952
    Average 5544 28.82 21003
    Standard deviation 5876 26.62 15747
    下载: 导出CSV
  • [1] SIDDIKA A, AL-MAMUN M A, ALYOUSEF R, et al. Properties and utilizations of waste tire rubber in concrete: A review[J]. Construction and Building Materials,2019,224:711-731. doi: 10.1016/j.conbuildmat.2019.07.108
    [2] HAN Q H, YANG G, XU J. Experimental study on the relationship between acoustic emission energy and fracture energy of crumb rubber concrete[J]. Structural Control and Health Monitoring,2018,25(10):e2240.
    [3] KHALIL E, ABD-ELMOHSEN M, ANWAR A M. Impact resistance of rubberized self-compacting concrete[J]. Water Science,2015,29(1):45-53. doi: 10.1016/j.wsj.2014.12.002
    [4] YUNG W H, YUNG L C, HUA L H. A study of the durability properties of waste tire rubber applied to self-compacting concrete[J]. Construction and Building Materials,2013,41:665-672.
    [5] NABILAH A B, NOAMAN N M R, NASIR N A M, et al. Experimental evaluation of flexural behaviour of rubberized concrete beam[J]. Asian Journal of Civil Engineering,2019,20(7):999-1005. doi: 10.1007/s42107-019-00159-5
    [6] FENG W, LIU F, YANG F, et al. Experimental study on dynamic split tensile properties of rubber concrete[J]. Construction and Building Materials,2018,165:675-687.
    [7] LIU F, ZHENG W, LI L, et al. Mechanical and fatigue performance of rubber concrete[J]. Construction and Building Materials,2013,47:711-719.
    [8] ZHU X Y, CHEN X D, LIU S S, et al. Experimental study on flexural fatigue performance of rubberised concrete for pavement[J]. International Journal of Pavement Engineering,2020,21(9):1135-1146. doi: 10.1080/10298436.2018.1521971
    [9] CHEN C, CHEN X, ZHANG J. Experimental study on flexural fatigue behavior of self-compacting concrete with waste tire rubber[J]. Mechanics of Advanced Materials and Structures,2019(6):1-12. doi: 10.1080/15376494.2019.1701152
    [10] 蒋咏秋. 美国复合材料力学的发展动向[J]. 复合材料学报, 1985, 2(1):101-106.

    JIANG Yongqiu. Recent advances of mechanics of composites in the united states[J]. Acta Materiae Compositae Sinica,1985,2(1):101-106(in Chinese).
    [11] SHAH S G, KISHEN J M C. Fracture behavior of concrete-concrete interface using acoustic emission technique[J]. Engineering Fracture Mechanics,2010,77(6):908-924. doi: 10.1016/j.engfracmech.2010.01.018
    [12] 罗素蓉, 陈伟妹, 王雪芳. 橡胶自密实混凝土断裂性能试验研究[J]. 水利学报, 2015, 46(2):217-222.

    LUO Surong, CHEN Weimei, WANG Xuefang. Fracture properties of rubberized self-compacting concrete[J]. Journal of Hydraulic Engineering,2015,46(2):217-222(in Chinese).
    [13] 曹国瑞, 王娟, 卿龙邦, 等. 橡胶混凝土断裂性能试验研究[J]. 土木建筑与环境工程, 2018, 40(6):94-100.

    CAO Guorui, WANG Juan, QING Longbang, et al. Experimental study o the fracture characteristics of crumb rubber concrete[J]. Journal of Civil, Architectural & Environmental Engineering,2018,40(6):94-100(in Chinese).
    [14] WANG C, ZHANG Y, MA A. Investigation into the fatigue damage process of rubberized concrete and plain concrete by AE analysis[J]. Journal of Materials in Civil Engineering,2011,23(7):953-960. doi: 10.1061/(ASCE)MT.1943-5533.0000257
    [15] SHAN Z, YU Z, LI X, et al. A damage model for concrete under fatigue loading[J]. Applied Sciences,2019,9(13):2768. doi: 10.3390/app9132768
    [16] 中华人民共和国国家发展和改革委员会. 水工混凝土断裂试验规程: DL/T 5332—2005[S]. 北京: 中国电力出版社, 2006.

    National Development and Reform Commission. Norm for fracture test of hydraulic concrete: DL/T 5332—2005[S]. Beijing: China Power Press, 2006(in Chinese).
    [17] 彭晨. 带预制裂纹混凝土疲劳损伤研究及寿命预测[D]. 武汉: 武汉理工大学, 2013.

    PENG Chen. Fatigue damage and life prediction of prefabricated crack concrete[D]. Wuhan: Wuhan University of Technology, 2013(in Chinese).
    [18] GUO Y, CHEN X, LI X, et al. Experimental study on fracture behavior of three-graded concrete under cyclic loading after initial static loading[J]. Theoretical and Applied Fracture Mechanics,2019,103:102272. doi: 10.1016/j.tafmec.2019.102272
    [19] CARPINTERI A, LACIDOGNA G, CORRADO M, et al. Cracking and crackling in concrete-like materials: A dynamic energy balance[J]. Engineering Fracture Mechanics,2016,155:130-144. doi: 10.1016/j.engfracmech.2016.01.013
    [20] LU Y Y, LI Z J. Study of the relationship between concrete fracture energy and AE signal energy under uniaxial compression[J]. Journal of Materials in Civil Engineering,2012,24(5):538-547. doi: 10.1061/(ASCE)MT.1943-5533.0000418
    [21] 吴香国, 韩相默, 徐世烺. 超高性能水泥基复合材料弯拉作用下虚拟应变硬化机制分析[J]. 复合材料学报, 2008, 25(2):129-134. doi: 10.3321/j.issn:1000-3851.2008.02.022

    WU Xiangguo, HAN Xiangmo, XU Shilang. Pseudo strain hardening model of ultra high performance cementitious composites under flexural loading[J]. Acta Materiae Compositae Sinica,2008,25(2):129-134(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.022
    [22] RILEM Technical Committee. FMC 1 Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[M]//RILEM. Recommendations for the testing and use of constructions materials. E & FN SPON, 1994.
    [23] NOORSUHADA M N. An overview on fatigue damage assessment of reinforced concrete structures with the aid of acoustic emission technique[J]. Construction and Building Materials,2016,112:424-439. doi: 10.1016/j.conbuildmat.2016.02.206
    [24] 胡少伟, 陆俊, 范向前. 混凝土断裂试验中的声发射特性研究[J]. 水力发电学报, 2011, 30(6):16-19.

    HU Shaowei, LU Jun, FAN Xiangqian. Study on acoustic emission technique for normal concrete fracture test[J]. Journal of Hydroelectric Engineering,2011,30(6):16-19(in Chinese).
    [25] KENNEDY J B, NEVILLE A M. Basic statistical methods for engineers and scientists[M]. Scranton International Textbook Co., 1964.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1159
  • HTML全文浏览量:  393
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-07-13
  • 网络出版日期:  2020-07-24
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回