留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环作用下玄武岩纤维-矿渣粉-粉煤灰混凝土压拉强度试验与细观结构

吴倩云 马芹永 王莹

吴倩云, 马芹永, 王莹. 冻融循环作用下玄武岩纤维-矿渣粉-粉煤灰混凝土压拉强度试验与细观结构[J]. 复合材料学报, 2021, 38(3): 953-965. doi: 10.13801/j.cnki.fhclxb.20200722.002
引用本文: 吴倩云, 马芹永, 王莹. 冻融循环作用下玄武岩纤维-矿渣粉-粉煤灰混凝土压拉强度试验与细观结构[J]. 复合材料学报, 2021, 38(3): 953-965. doi: 10.13801/j.cnki.fhclxb.20200722.002
WU Qianyun, MA Qinyong, WANG Ying. Compression-tensile tests and meso-structure of basalt fiber-slag powder-fly ash concrete under freeze-thaw cycles[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 953-965. doi: 10.13801/j.cnki.fhclxb.20200722.002
Citation: WU Qianyun, MA Qinyong, WANG Ying. Compression-tensile tests and meso-structure of basalt fiber-slag powder-fly ash concrete under freeze-thaw cycles[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 953-965. doi: 10.13801/j.cnki.fhclxb.20200722.002

冻融循环作用下玄武岩纤维-矿渣粉-粉煤灰混凝土压拉强度试验与细观结构

doi: 10.13801/j.cnki.fhclxb.20200722.002
基金项目: 安徽省高校领军人才团队资助项目(No.2016-16)
详细信息
    通讯作者:

    马芹永,博士,教授,博士生导师,研究方向为隧道与地下结构工程  E-mail:qymaah@126.com

  • 中图分类号: TU528

Compression-tensile tests and meso-structure of basalt fiber-slag powder-fly ash concrete under freeze-thaw cycles

  • 摘要: 对玄武岩纤维-矿渣粉-粉煤灰混凝土(BF-SP-FAC)进行了单轴抗压试验、劈裂抗拉试验、冻融循环试验、气孔结构测试试验和SEM分析。研究了不同冻融次数下BF-SP-FAC冻融损伤量、抗压强度、抗拉强度的变化,分析了气孔结构参数(含气量、气孔比表面积、气泡间距系数和气泡平均弦长)与BF-SP-FAC抗压强度、抗拉强度、冻融损伤量的关系,运用灰关联熵分析法讨论了BF-SP-FAC气孔结构参数对抗压强度、抗拉强度、冻融损伤量影响的主次关系。结果表明:相同冻融次数下,与其他纤维掺量相比,玄武岩纤维掺量为0.18vol%时,BF-SP-FAC抗冻性能较好,抗压强度和抗拉强度最高;在相同玄武岩纤维掺量下,随含气量、气泡间距系数、气泡平均弦长的增大,BF-SP-FAC抗压强度和抗拉强度减小,而冻融损伤量增大;随气孔比表面积的增加,BF-SP-FAC抗压强度和抗拉强度增大,而冻融损伤量减小。气孔比表面积是影响BF-SP-FAC强度的最主要因素,而气泡平均弦长是影响BF-SP-FAC冻融损伤量的主要因素,最小灰熵关联度分别为0.998和0.993。气孔结构参数与强度、冻融损伤关系的建立,可预估混凝土的强度与冻融损伤。

     

  • 图  1  BF-SP-FAC气孔结构测试过程

    Figure  1.  Testing process of air-void structure of BF-SP-FAC

    图  2  BF-SP-FAC冻融循环次数与冻融损伤量D的关系

    Figure  2.  Relationship between freeze-thaw cycles and damage amount D of BF-SP-FAC

    图  3  BF-SP-FAC冻融循环次数与抗压强度的关系

    Figure  3.  Relationship between freeze-thaw cycle and compressive strength of BF-SP-FAC

    图  4  BF-SP-FAC冻融循环次数与抗拉强度的关系

    Figure  4.  Relationship between freeze-thaw cycle and tensile strength of BF-SP-FAC

    图  5  不同玄武岩纤维掺量的BF-SP-FAC的SEM图像

    Figure  5.  SEM images of BF-SP-FAC with different basalt fiber contents

    图  6  BF-SP-FAC的气孔结构

    Figure  6.  Air-void structure of BF-SP-FAC

    图  7  BF-SP-FAC的冻融过程

    Figure  7.  Process of freeze-thaw of BF-SP-FAC

    图  8  BF-SP-FAC的含气量与宏观性能的关系

    Figure  8.  Relationships between macroscopic properties and air content of BF-SP-FAC

    图  9  BF-SP-FAC的气泡间距系数与宏观性能的关系

    Figure  9.  Relationships between macroscopic properties and spacing factor of BF-SP-FAC

    图  10  BF-SP-FAC的气泡平均弦长与宏观性能的关系

    Figure  10.  Relationships between macroscopic properties and average chord length of BF-SP-FAC

    图  11  BF-SP-FAC气孔比表面积与宏观性能的关系

    Figure  11.  Relationships between macroscopic properties and specific surface area of BF-SP-FAC

    图  12  BF-SP-FAC抗压强度的灰熵关联度E1

    Figure  12.  Grey entropy correlation E1 of compressive strength of BF-SP-FAC

    图  13  BSFC抗拉强度的灰熵关联度E2

    Figure  13.  Grey entropy correlation E2 of tensile strength of BF-SP-FAC

    图  14  BF-SP-FAC抗压强度的灰熵关联度E3

    Figure  14.  Grey entropy correlation E3 of compressivestrength of BF-SP-FAC

    图  15  BF-SP-FAC抗拉强度的灰熵关联度E4

    Figure  15.  Grey entropy correlation E4 of tensile strength of BF-SP-FAC

    图  16  不同冻融循环次数的BF-SP-FAC冻融损伤量的灰熵关联度E5

    Figure  16.  Grey entropy correlation E5 of damage amount of BF-SP-FAC with different freeze-thaw cycles

    图  17  不同玄武岩纤维掺量的BBF-SP-FAC冻融损伤量的灰熵关联度E6

    Figure  17.  Grey entropy correlation E6 of damage amount of BF-SP-FAC with different basalt fiber contents

    表  1  胶凝材料的化学成分

    Table  1.   Chemistry composition of binder wt%

    CompositionSiO2Al2O3CaOFe2O3SO3MgONa2OK2O
    Cement 19.60 6.50 66.3 3.50 2.50 0.70 0.60 0.30
    Fly ash 54.18 22.35 0.4 12.36 0.06 2.62 3.88
    Slag powder 42.00 9.80 40.0 1.89 0.21 5.09
    下载: 导出CSV

    表  2  玄武岩纤维物理力学性能

    Table  2.   Physical and mechanical properties of basalt fiber

    Single fiber
    length/mm
    Fiber
    diameter/μm
    Density/
    (kg·m−3)
    Breaking
    elongation/%
    Modulus of
    elasticity/GPa
    Tensile
    strength/MPa
    6 mm1526502.4–3.091–1103000–4800
    下载: 导出CSV

    表  3  玄武岩纤维-矿渣粉-粉煤灰混凝土(BF-SP-FAC)的配比

    Table  3.   Mix ratio of basalt fiber-slag powder-fly ash concrete (BF-SP-FAC)

    Cement/
    (kg·m−3)
    Fly ash/
    (kg·m−3)
    slag powder/
    (kg·m−3)
    Aggregate/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Water/
    (kg·m−3)
    Basalt
    fiber/vol%
    278.57 85.71 64.29 1111.69 598.6 210 0
    278.57 85.71 64.29 1111.69 598.6 210 0.12
    278.57 85.71 64.29 1111.69 598.6 210 0.15
    278.57 85.71 64.29 1111.69 598.6 210 0.18
    下载: 导出CSV
  • [1] 金生吉, 李忠良, 张健, 等. 玄武岩纤维混凝土腐蚀条件下抗冻融性能试验研究[J]. 工程力学, 2015, 32(5):178-183.

    JIN Shengji, LI Zhongliang, ZHANG Jian, et al. Experimental study on anti-freezing and thawing performance of reinforced concrete of basalt fiber under corrosion condition[J]. Engineering Mechanics,2015,32(5):178-183(in Chinese).
    [2] 郭子麟. 单面冻融条件下玄武岩纤维混凝土孔结构及力学性能研究[D]. 内蒙古: 内蒙古工业大学, 2018.

    GUO Zilin. Research on pore structure and mechanical properties of basalt fiber reinforced concrete under freezing and thawing conditions[D]. Inner Mongolia: Inner Mongolia University of Technology, 2018(in Chinese).
    [3] 赵燕茹, 宋博, 王磊, 等. 冻融循环作用后玄武岩纤维混凝土的断裂性能[J]. 建筑材料学报, 2019, 22(4):575-583.

    ZHAO Yanru, SONG Bo, WANG Lei, et al. Experimental study on fracture properties of basalt fiber reinforced concrete after freeze-thaw cycles[J]. Journal of Building Materials,2019,22(4):575-583(in Chinese).
    [4] 李文哲, 吴永根, 李文蕾, 等. 玄武岩纤维机场道面混凝土抗冻性试验研究[J]. 科学技术与工程, 2013, 13(26):7880-7883, 7888. doi: 10.3969/j.issn.1671-1815.2013.26.056

    LI Wenzhe, WU Yonggen, LI Wenlei, et al. Experimental study on frost resistence of basalt fiber reinforced concrete for airport pavement[J]. Science Technology and Engineering,2013,13(26):7880-7883, 7888(in Chinese). doi: 10.3969/j.issn.1671-1815.2013.26.056
    [5] 李建. 短切玄武岩纤维对矿渣粉煤灰混凝土力学性能和微观结构的影响[J]. 硅酸盐通报, 2017, 36(2):727-732, 737.

    LI Jian. Effects of chopped basalt fiber on mechanical properties and microstructure of slag fly ash concrete[J]. Bulletin of the Chinese Ceramic Society,2017,36(2):727-732, 737(in Chinese).
    [6] 叶邦土, 蒋金洋, 孙伟, 等. 玄武岩纤维增强大掺量矿物掺合料高强混凝土试验研究[J]. 东南大学学报(自然科学版), 2011, 41(3):611-615.

    YE Bangtu, JIANG Jinyang, SUN Wei, et al. Experimental study on reinforcing HSC with large volume mineral admixtures basalt fibers[J]. Journal of Southeast University (Natural Science Edition),2011,41(3):611-615(in Chinese).
    [7] 李阳, 王瑞骏, 闫菲, 等. 粉煤灰对混凝土抗冻及抗硫酸盐性能的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(2):219-226.

    LI Yang, WANG Ruijun, YAN Fei, et al. Effects of fly ash on antifreeze and sulfate resistance of concrete[J]. Journal of Northwest A & F University (Natural Science Edition),2017,45(2):219-226(in Chinese).
    [8] 张雄, 叶子, 郇坤, 等. 气泡结构调控组分对引气砂浆流动度及抗压强度的影响[J]. 同济大学学报(自然科学版), 2019, 47(2):234-240.

    ZHANG Xiong, YE Zi, XUAN Kun, et al. Effect of bubble structure modifying agent on fluidity and compressive strength of air-entrained mortar[J]. Journal of Tongji University (Natural Science),2019,47(2):234-240(in Chinese).
    [9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8):1348-1353.

    XUE Cuizhen, SHEN Aiqin, GUO Yinchuan. Prediction model for the compressive strength of concrete mixed with CWCPM based on pore structure parameters[J]. Materials Review,2019,33(8):1348-1353(in Chinese).
    [10] 张家科, 袁捷, 刘文博, 等. 基于工业扫描分析混凝土气泡结构与抗盐冻性能[J]. 同济大学学报(自然科学版), 2018, 46(1):53-59.

    ZHANG Jiake, YUAN Jie, LIU Wenbo, et al. Application of industrial computerized tomography to analyze air voids structure and salt scaling resistance of concrete[J]. Journal of Tongji University (Natural Science),2018,46(1):53-59(in Chinese).
    [11] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系[J]. 材料导报, 2017, 31(2):117-120.

    QIN Xiaochuan, MENG Shaoping, TU Yongming. Relationship between mesoscopic freeze-thaw damage and compressive strength of high-strength concrete material[J]. Materials Review,2017,31(2):117-120(in Chinese).
    [12] YUAN J, DU Z Y, WU Y, et al. Salt-frost resistance performance of airfield concrete based on meso-structural parameters[J]. Journal of Material in Civil Engineering,2019,31(9):04019196. doi: 10.1061/(ASCE)MT.1943-5533.0002789
    [13] SHON C S, ABDIGALIYEV A, BAGITOVA S, et al. Determination of air-void system and modified frost resistance number for freeze-thaw resistance evaluation of ternary blended concrete made of ordinary Portland cement/silica fume/class F fly ash[J]. Cold Regions Science and Technology,2018,155:127-136. doi: 10.1016/j.coldregions.2018.08.003
    [14] 张凯, 王起才, 杨子江, 等. 多年冻土区引气混凝土抗压强度及抗冻性研究[J]. 铁道学报, 2019, 41(5):156-161. doi: 10.3969/j.issn.1001-8360.2019.05.019

    ZHANG Kai, WANG Qicai, YANG Zijiang, et al. Effect of air-entrained concrete on compressive strength and frost resistance in permafrost region[J]. Journal of the China Railway Society,2019,41(5):156-161(in Chinese). doi: 10.3969/j.issn.1001-8360.2019.05.019
    [15] YUAN J, WU Y, ZHANG J. Characterization of air voids and frost resistance of concrete based on industrial computerized tomographical technology[J]. Construction and Building Materials,2018,168:975-983. doi: 10.1016/j.conbuildmat.2018.01.117
    [16] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Architecture & Building Press, 2011(in Chinese).
    [17] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for the test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for the test method for mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2003(in Chinese).
    [19] 李趁趁, 胡婧, 元成方, 等. 纤维/高强混凝土抗冻性能试验[J]. 复合材料学报, 2019, 36(8):1977-1983.

    LI Chenchen, HU Jing, YUAN Chengfang, et al. Experimental study on freezing resistance of fiber reinforced high strength concrete[J]. Acta Materiae Compositae Sinica,2019,36(8):1977-1983(in Chinese).
    [20] 张永存, 李青宁, 房辰泽. 基于细观分析的纤维混凝土力学性能及耐久性研究[J]. 混凝土, 2016(8):48-50, 70. doi: 10.3969/j.issn.1002-3550.2016.08.012

    ZHANG Yongcun, LI Qingning, FANG Chenze. Study of the mechanical properties and durability of fiber reinforced concrete based on meso analysis[J]. Concrete,2016(8):48-50, 70(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.08.012
    [21] 梁宁慧, 胡杨, 钟杨, 等. 多尺度聚丙烯纤维混凝土孔结构及抗冻性[J]. 重庆大学学报, 2019, 42(11):38-46.

    LIANG Ninghui, HU Yang, ZHONG Yang, et al. Study on pore structure and frost resistance of multi-scale polypropylene fiber reinforced concrete[J]. Journal of Chongqing University,2019,42(11):38-46(in Chinese).
    [22] 赵燕茹, 郭子麟, 范晓奇, 等. 玄武岩纤维混凝土应力应变关系及孔结构分析[J]. 硅酸盐通报, 2017, 36(12):4142-4150.

    ZHAO Yanru, GUO Zilin, FAN Xiaoqi, et al. Basalt fiber reinforced concrete stress-strain relationship and pore structure analysis[J]. Bulletin of the Chinese Ceramic Society,2017,36(12):4142-4150(in Chinese).
    [23] POWERS T C, HELMUTH R A. Theory of volume changes in hardened portland-cement paste during freezing[C]//Proceedings of the Thirty-Second Annual Meeting of the Highway Research Board. Washington: Highway Research Board, 1953, 32: 285-297.
    [24] 王起才, 张凯, 王庆石. −3℃养护下引气混凝土渗透性能与孔结构特性[J]. 材料导报, 2015, 29(14):131-134, 139.

    WANG Qicai, ZHANG Kai, WANG Qingshi. Permeability and properties of pore structure in air-entraining concrete under −3℃ curing[J]. Materials Reports,2015,29(14):131-134, 139(in Chinese).
    [25] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999.

    WU Zhongwei, LIAN Huizhen. High-performance concrete[M]. Beijing: China Railway Publishing House, 1999(in Chinese).
    [26] 王爽, 王登峰. 灰色关联及熵权法对碳纤维增强树脂复合材料防撞梁的耐撞性优化设计[J]. 复合材料学报, 2020, 37(2):345-355.

    WANG Shuang, WANG Dengfeng. Optimization design of carbon fiber reinforced polymer anti-collision beam crashworthiness by grey relational analysis with entropy method[J]. Acta Materiae Compositae Sinica,2020,37(2):345-355(in Chinese).
    [27] WANG Z J, WANG Q, AI T. Comparative study on effects of binders and curing ages on properties of cement emulsified asphalt mixture using gray correlation entropy analysis[J]. Construction and Building Materials,2014,54:615-622. doi: 10.1016/j.conbuildmat.2013.12.093
    [28] 赵燕茹, 王志慧, 王磊, 等. 冻融循环作用后BFRC宏微观性能的灰熵法分析[J]. 建筑材料学报, 2019, 22(1):45-53. doi: 10.3969/j.issn.1007-9629.2019.01.007

    ZHAO Yanru, WANG Zhihui, WANG Lei, et al. Grey entropy analysis of macro and micro properties of BFRC after freeze-thaw cycles[J]. Journal of Building Materials,2019,22(1):45-53(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.01.007
    [29] 周朋, 谢松林, 李强. 水胶比对混凝土性能及气孔结构的影响分析[J]. 硅酸盐通报, 2018, 37(3):974-978.

    ZHOU Peng, XIE Songlin, LI Qiang. Effect of water-binder ratio on properties and pore structure of concrete[J]. Bulletin of the Chinese Ceramic Society,2018,37(3):974-978(in Chinese).
    [30] 徐德儒, 邹春霞, 牛德元, 等. 模袋混凝土抗冻性与孔结构试验研究[J]. 硅酸盐通报, 2019, 38(8):2631-2636, 2649.

    XU Deru, ZOU Chunxia, NIU Deyuan, et al. Experimental study on frost resistance and pore structure of bag concrete[J]. Bulletin of the Chinese Ceramic Society,2019,38(8):2631-2636, 2649(in Chinese).
    [31] 丁莎, 牛荻涛, 王家滨. 喷射粉煤灰混凝土微观结构和力学性能试验研究[J]. 硅酸盐通报, 2015, 34(5):1187-1192.

    DING Sha, NIU Ditao, WANG Jiabin. Experimental study on micro-structure and mechanical properties of shotcrete with fly ash[J]. Bulletin of the Chinese Ceramic Society,2015,34(5):1187-1192(in Chinese).
    [32] 石妍, 杨华全, 陈霞, 等. 骨料种类对混凝土孔结构及微观界面的影响[J]. 建筑材料学报, 2015, 18(1):133-138. doi: 10.3969/j.issn.1007-9629.2015.01.024

    SHI Yan, YANG Huaquan, CHEN Xia, et al. Influence of aggregate variety on pore structure and microscopic interface of concrete[J]. Journal of Building Materials,2015,18(1):133-138(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.01.024
    [33] 关虓, 邱继生, 潘杜, 等. 冻融环境下煤矸石混凝土损伤度评估方法研究[J]. 材料导报, 2018, 32(20):3546-3552. doi: 10.11896/j.issn.1005-023X.2018.20.010

    GUAN Xiao, QIU Jisheng, PAN Du, et al. Research on the evaluation method of damage degree of coal gangue concrete under freezing-thawing[J]. Materials Reports,2018,32(20):3546-3552(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.20.010
    [34] 牛建刚, 左付亮, 王佳雷, 等. 塑钢纤维轻骨料混凝土的冻融损伤模型[J]. 建筑材料学报, 2018, 21(2):235-240. doi: 10.3969/j.issn.1007-9629.2018.02.010

    NIU Jiangang, ZUO Fuliang, WANG Jialei, et al. Freeze-thaw damage model of plastic-steel fiber reinforced lightweight aggregate concrete[J]. Journal of Building Materials,2018,21(2):235-240(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.02.010
    [35] 程永春, 余地, 谭国金, 等. 玄武岩纤维沥青混合料的冻融损伤演化规律[J]. 哈尔滨工程大学学报, 2019, 40(3):518-524.

    CHENG Yongchun, YU Di, TAN Guojin, et al. Evolution on freeze-thaw damage of basalt fiber asphalt mixture[J]. Journal of Harbin Engineering University,2019,40(3):518-524(in Chinese).
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  1103
  • HTML全文浏览量:  432
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 录用日期:  2020-07-15
  • 网络出版日期:  2020-07-22
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回