留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构在竖向载荷下的力学性能

唐玉玲 陈浩 平学成 张琰

唐玉玲, 陈浩, 平学成, 等. 碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构在竖向载荷下的力学性能[J]. 复合材料学报, 2021, 38(3): 797-808. doi: 10.13801/j.cnki.fhclxb.20200717.002
引用本文: 唐玉玲, 陈浩, 平学成, 等. 碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构在竖向载荷下的力学性能[J]. 复合材料学报, 2021, 38(3): 797-808. doi: 10.13801/j.cnki.fhclxb.20200717.002
TANG Yuling, CHEN Hao, PING Xuecheng, et al. Mechanical properties of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure under vertical load[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 797-808. doi: 10.13801/j.cnki.fhclxb.20200717.002
Citation: TANG Yuling, CHEN Hao, PING Xuecheng, et al. Mechanical properties of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure under vertical load[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 797-808. doi: 10.13801/j.cnki.fhclxb.20200717.002

碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构在竖向载荷下的力学性能

doi: 10.13801/j.cnki.fhclxb.20200717.002
基金项目: 国家自然科学基金(51975411);天津市自然科学基金(18JCYBJC88500);天津市轻工与食品工程机械装备集成设计与在线监控重点试验室开放基金(2017 LIMFE02;2019 LIMFE04)
详细信息
    通讯作者:

    平学成,博士,教授,博士生导师,研究方向为复合材料及其结构的力学性能分析 E-mail: xuechengping@hotmail.com

  • 中图分类号: TB332

Mechanical properties of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure under vertical load

  • 摘要: 对碳纤维增强树脂复合材料金字塔点阵夹芯假脚结构在竖向载荷下的力学性能进行研究。制备了三种不同相对密度的假脚,并进行了竖向载荷压缩试验。结果表明,相对密度对结构力学性能的影响显著,载荷-位移曲线呈非线性,峰值载荷和刚度值随相对密度的增加而增大,三种相对密度的破坏模式均为节点的失效和面板的皱曲,结构具有一定的能量吸收能力。建立了金字塔点阵夹芯假脚结构的理论强度预报模型,给出了结构在竖向载荷作用下的挠度响应,获得了四种失效模式和临界破坏载荷。对比了理论计算与试验的峰值载荷、破坏模式和挠度,得到较好的一致性。给出假脚结构参数(面板厚度、杆件角度和杆件直径)对破坏模式和破坏临界载荷的影响,并绘制了结构失效机制图。

     

  • 图  1  碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构示意图

    Figure  1.  Schematic diagram of carbon fiber reinforced epoxy composite pyramidal lattice sandwich prosthetic foot structure

    图  2  碳纤维增强环氧树脂复合材料金字塔点阵芯子的单胞示意图

    Figure  2.  Schematic diagram of unit cell of carbon fiber reinforced epoxy composite pyramidal lattice core

    图  3  碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的制备过程

    Figure  3.  Preparation process of carbon fiber reinforced epoxy composite pyramidal lattice sandwich prosthetic foot structure

    图  4  声发射(AE)采集系统

    Figure  4.  Acoustic emission (AE) acquisition system

    图  5  碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构压缩性能测试装置

    Figure  5.  Device for testing compressive properties of carbon fiber reinforced epoxy composite pyramidal lattice sandwich prosthetic foot structure

    图  6  三种不同相对密度的碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的载荷-位移曲线

    Figure  6.  Load-displacement curves of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structures with three different relative densities

    图  7  三种相对密度的碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的刚度值和单位质量极限载荷

    Figure  7.  Stiffness values and unit mass limit loads of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure with three relative densities

    图  8  碳纤维增强环氧树脂复合材料点阵夹芯结构常见破坏模式

    Figure  8.  Common failure modes of carbon fiber reinforced epoxy composite lattice sandwich structure ((a)Panel wrinkling; (b)Panel collapse; (c)Member crushing; (d)Member buckling; (e)Node failure)

    图  9  相对密度为12.71%的碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的载荷-位移曲线和破坏模式

    Figure  9.  Load-displacement curve and failure mode of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure with relative density of 12.71%

    图  10  碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的吸能特性

    Figure  10.  Energy absorption characteristics of carbon fiber reinforced epoxy composite pyramid dimension lattice sandwich prosthetic foot structure

    图  11  相对密度为11.12%的碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的载荷曲线和声发射(AE)历程图

    Figure  11.  Load curves and acoustic emission(AE) history graphs of carbon fiber reinforced epoxy resin composite pyramid lattice sandwich prosthetic foot structure with relative density of 11.12%

    图  12  碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的简化及受力情况

    Figure  12.  Simplification and load of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure

    图  13  碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的截面尺寸

    Figure  13.  Cross-sectional dimensions of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure

    图  14  碳纤维增强环氧树脂复合材料金字塔点阵夹芯结构的杆件角度对临界载荷和破坏模式的影响

    Figure  14.  Influence of angle of rod of carbon fiber reinforced epoxy composite pyramidal lattice sandwich prosthetic foot structure on critical load and failure mode

    图  15  碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的杆件直径对临界载荷和破坏模式的影响

    Figure  15.  Influence of carbon fiber reinforced epoxy composite pyramidal lattice sandwich prosthetic foot structure’s bar diameter on critical load and failure mode

    图  16  碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的面板厚度对临界载荷和破坏模式的影响

    Figure  16.  Influence of thickness of panel of carbon fiber reinforced epoxy composite pyramidal lattice sandwich prosthetic foot structure on critical load and failure mode

    图  17  不同面板厚度和杆件直径的碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的失效机制

    Figure  17.  Failure mechanism of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure with different face sheet thicknesses and rod diameters

    图  18  不同面板厚度和杆件角度的碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的失效机制

    Figure  18.  Failure mechanism of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure with different face sheet thicknesses and rod angles

    表  1  碳纤维增强环氧树脂复合材料的基本力学性能参数

    Table  1.   Basic mechanical performance parameters of carbon fiber reinforced epoxy composite

    PropertySymbolValue
    Longitudinal stiffness/GPaE11123
    Transverse stiffness/GPaE228.4
    Out-of-plane stiffness/GPaE338.4
    Poisson’s ratioV12, V13, V230.32, 0.32, 0.3
    Shear modulus/GPaG12, G13, G235.5, 3.0, 3.0
    Longitudinal tensile strength/MPaXT2100
    Longitudinal compressive strength/MPaXC800
    Transverse tensile strength/MPaYT25
    Transverse compressive strength/MPaYC120
    Out-of-plane tensile strength/MPaZT50
    Density/(kg.m−3)$\rho $1560
    下载: 导出CSV

    表  2  碳纤维增强环氧树脂复合材料金字塔点阵夹芯结构竖向载荷下的试件

    Table  2.   Test pieces under vertical load of carbon fiber reinforced epoxy composite pyramid lattice sandwich structure

    No.Lay orderPanel thickness t/mmRelative density/%
    A1[0°/90°]51.011.12
    B1[0°/90°]61.212.71
    C1[0°/90°]71.414.24
    下载: 导出CSV

    表  3  碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构的理论和试验峰值载荷和破坏模式的对比

    Table  3.   Theoretical and experimental comparison of peak load and failure mode of carbon fiber reinforced epoxy composite pyramidal lattice sandwich prosthetic foot structure

    RD/%Failure load /NDeflection /mmFailure mode
    TETHRE/%TETHRE/%TETH
    11.12 801 913 13.98 13.4 10.8 24.10 PW PW
    12.71 1406 1582 12.52 15.1 14.4 4.90 PW PW
    14.24 2200 2518 14.45 14.6 14.7 0.70 PW PW
    Notes: RD—Relative density; TE—Test; TH—Theoretical; RE—Relative error; PW—Panel wrinkling.
    下载: 导出CSV
  • [1] TALEBITOOTI R, ZARASTVAND M R. The effect of nature of porous material on diffuse field acoustic transmission of the sandwich aerospace composite doubly curved shell[J]. Aerospace Science and Technology, 2018, 78: 157-170.
    [2] JOHNSON A, KILCHERT S, FISCHER S, et al. Design and performance of novel aircraftstructures with folded composite cores[M]//BEAUMONT P W R, SOUTIS C, HODZIC A. Structural integrity and durability of advanced composites. Woodhead Publishing, 2015: 793-827.
    [3] GEORGE T, DESHPANDE V S, WADLEY H N G. Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Composites Part A: Applied Science and Manufacturing,2013,47:31-40. doi: 10.1016/j.compositesa.2012.11.011
    [4] FINNEGAN K, KOOISTRA G, WADLEY H N G, et al. The compressive response of carbon fiber composite pyramidal truss sandwich cores[J]. International Journal of Materials Research,2007,98(12):1264-1272. doi: 10.3139/146.101594
    [5] LI X, XIONG J, MA L, et al. Effect of vacuum thermal cycling on the compression and shear performance of composite sandwich structures containing pyramidal truss cores[J]. Composites Science & Technology,2018,158:67-78.
    [6] ZHAO Z, WEN S, LI F. Vibration analysis of multi-span lattice sandwich beams using the assumed mode method[J]. Composite Structures,2018,185:716-727.
    [7] LIU J Y, XIANG L L, KAN T. The effect of temperature on the bending properties and failure mechanism of composite truss core sandwich structures[J]. Composites Part A: Applied Science and Manufacturing,2015,79:146-154. doi: 10.1016/j.compositesa.2015.09.017
    [8] SONG Y, CHOI S, KIM S, et al. Performance test for laminated-type prosthetic foot with composite plates[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(10): 1777-1786.
    [9] LEE J Y, LEE D Y, PARK J W, et al. Carbon/epoxy composite foot structure for biped robots[J]. Composite Structures,2016,140:344-350. doi: 10.1016/j.compstruct.2016.01.022
    [10] 王双情, 崔海坡, 张阿龙. 碳纤维复合材料假脚冲击与压缩强度试验[J]. 机械工程学报, 2016, 52(22):55-60. doi: 10.3901/JME.2016.22.055

    WANG Shuangqing, CUI Haipo, ZHANG Along. Impact and compressive strength experiment of carbon fiber composites prosthetic foot[J]. Journal of Mechanical Engineering,2016,52(22):55-60(in Chinese). doi: 10.3901/JME.2016.22.055
    [11] BENCE R, DAVID P, RITA K. Functionality and load-bearing analysis of 3D-printed prosthetic feet[J]. Materials Today,2018,5(13):26566-26571.
    [12] WU Q Q, MA L, WU L Z, et al. A novel strengthening method for carbon fiber composite lattice truss structures[J]. Composite Structures,2016,153:585-592.
    [13] LI X D, WU L Z, MA L, et al. Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames[J]. Theoretical and Applied Mechanics Letters,2016,6(2):76-80. doi: 10.1016/j.taml.2016.02.002
    [14] SUN Y, GUO L C, WANG T S, et al. Bending behavior of composite sandwich structures with graded corrugated truss cores[J]. Composite Structures,2018,185:446-454. doi: 10.1016/j.compstruct.2017.11.043
    [15] FU T, CHEN Z B, YU H Y, et al. Thermal buckling and sound radiation behavior of truss core sandwich panel resting on elastic foundation[J]. International Journal of Mechanical Sciences,2019,161-162:105055.
    [16] 王兵, 吴林志, 杜善义, 等. 碳纤维增强金字塔点阵夹芯结构的抗压缩性能[J]. 复合材料学报, 2010, 27(1):133-138.

    WANG Bing, WU Linzhi, DU Shanyi, et al. Compression resistance of carbon fiber reinforced pyramid lattice sandwich structure[J]. Acta Materiae Compositae Sinica,2010,27(1):133-138(in Chinese).
    [17] 唐玉玲, 姜智, 周振功, 等. 碳纤维增强环氧树脂复合材料螺栓连接结构在拉伸载荷下损伤过程的声发射分析[J]. 复合材料学报, 2019, 36(8):1854-1863.

    TANG Yuling, JIANG Zhi, ZHOU Zhengong, et al. Acoustic emission analysis of carbon fiber reinforced polymer bolted jointed damage process under tensile load[J]. Acta Materiae Compositae Sinica,2019,36(8):1854-1863(in Chinese).
    [18] 娄佳. 复合材料点阵夹芯结构的弯曲、屈曲和振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    LOU Jia. Bending, buckling and vibration properties of composite lattice sandwich structures[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
    [19] 陈人哲. 平面曲梁挠度方程式及其在纺织零件计算中的应用举例[J]. 东华大学学报:自然科学版, 1957(3):29-48.

    CHEN Renzhe. Deflection equation of plane curved beam and its application example in calculation of spinning machine parts[J]. Journal of Donghua University :Natural Science,1957(3):29-48(in Chinese).
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  1351
  • HTML全文浏览量:  537
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 录用日期:  2020-07-01
  • 网络出版日期:  2020-07-18
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回