留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于低温贮箱的铝合金-硬质聚氨酯泡沫夹芯共底设计与分析

李克诚 杨雷 高东岳 柳敏静 徐新生 武湛君

李克诚, 杨雷, 高东岳, 等. 用于低温贮箱的铝合金-硬质聚氨酯泡沫夹芯共底设计与分析[J]. 复合材料学报, 2021, 38(3): 911-919. doi: 10.13801/j.cnki.fhclxb.20200714.002
引用本文: 李克诚, 杨雷, 高东岳, 等. 用于低温贮箱的铝合金-硬质聚氨酯泡沫夹芯共底设计与分析[J]. 复合材料学报, 2021, 38(3): 911-919. doi: 10.13801/j.cnki.fhclxb.20200714.002
LI Kecheng, YANG Lei, GAO Dongyue, et al. Design and analysis of aluminum alloy-rigid polyurethane foam-cored common bulkhead for cryogenic tanks[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 911-919. doi: 10.13801/j.cnki.fhclxb.20200714.002
Citation: LI Kecheng, YANG Lei, GAO Dongyue, et al. Design and analysis of aluminum alloy-rigid polyurethane foam-cored common bulkhead for cryogenic tanks[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 911-919. doi: 10.13801/j.cnki.fhclxb.20200714.002

用于低温贮箱的铝合金-硬质聚氨酯泡沫夹芯共底设计与分析

doi: 10.13801/j.cnki.fhclxb.20200714.002
基金项目: 国家重点研发计划 (2018YFA0702800);中央高校基本科研业务费专项资金(DUT19ZD101);国家自然科学基金(51805068)
详细信息
    通讯作者:

    武湛君,博士,教授,研究方向为复合材料与结构设计  E-mail:wuzhj@dlut.edu.cn

  • 中图分类号: V45

Design and analysis of aluminum alloy-rigid polyurethane foam-cored common bulkhead for cryogenic tanks

  • 摘要: 采用铝合金面板-硬质聚氨酯泡沫夹芯的复合式夹层构型,设计了一种用于低温火箭推进剂贮箱的共底结构,其具有轻量化、易于制造、承载/隔热一体化的特点。通过数值模拟手段,对该共底的隔热效果、结构稳定性及热力耦合问题进行分析。结果表明,该共底满足低温液氢/液氧贮箱隔热要求,在0.342 MPa压差下不失稳,单箱打压低于0.5 MPa时材料不失效。此结构的设计分析可为新型低温贮箱共底的设计提供技术支持。

     

  • 图  1  贮箱共底结构示意图

    Figure  1.  Schematic diagram of common bulkhead structure

    图  2  贮箱共底轴向剖面示意图

    Figure  2.  Section view of common bulkhead

    图  3  共底结构的网格划分

    Figure  3.  Mesh discretization of common bulkhead

    图  4  硬质聚氨酯(RPU)夹芯层上下表面温度随轴向坐标的变化

    Figure  4.  Temperature distribution on top and bottom surfaces of rigid polyurethane (RPU) foam core respectively

    图  5  上下金属面板的热应力

    Figure  5.  Thermal stress of upper and lower metal panels respectively

    图  6  RPU夹芯层上下表面的热应力

    Figure  6.  Thermal stress of top and bottom surfaces of RPU foam core respectively

    图  7  上下金属面板及RPU夹芯层上下表面最大热应变

    Figure  7.  Maximum thermal strain of upper and lower metal panels and RPU foam core

    图  8  上下金属面板在热载荷下的位移

    Figure  8.  Displacement of upper and lower metal panels under thermal load respectively

    图  9  RPU泡沫夹芯共底的屈曲模态

    Figure  9.  Buckling modes of RPU foam-cored common bulkhead

    图  10  上下金属面板在热/压耦合载荷下的等效应力

    Figure  10.  Von-Mises stress of upper and lower metal panels under coupled thermal and pressure loads

    图  11  RPU夹芯层上下表面在热/压耦合载荷下的等效应力

    Figure  11.  Von-Mises stress of upper and lower surfaces of RPU foam core under coupled thermal and pressure loads

    图  12  RPU夹芯层上下表面在热/压耦合载荷下的最大主应变

    Figure  12.  Maximum principal strain of RPU foam core for upper and lower surfaces under coupled thermal and pressure loads

    图  13  上下金属面板在热/压耦合载荷下的位移

    Figure  13.  Displacement of upper and lower metal panels under coupled thermal and pressure loads

    图  14  共底结构中心顶点和底点轴向位移曲线

    Figure  14.  Axial displacement of top and bottom nodes on common bulkhead center

    表  1  上下金属面板尺寸参数

    Table  1.   Size parameters of upper and lower metal panels

    ai/mbi/m
    Upper panel 1.6 1.589
    Lower panel 1.12 1.069
    Notes: ${a_{\rm{i}}}$, ${b_{\rm{i}}}$—Lengthes of semimajor axis and semiminor axis of metal panels, respectively.
    下载: 导出CSV

    表  2  贮箱共底所用各材料的热性能和力学性能

    Table  2.   Thermal and mechanical properties of materials for common bulkhead

    ρ/(g·cm−3)E/MPavSc/MPaSy/MPaλ/(10−6·℃−1)C/(J(g·℃−1))k/(W(m·℃−1))
    Al alloy 2.84 73100 0.33 483 414 20.8 0.88 154
    GFRP 1.85 26000 0.28 500 8 1.130 0.586
    RPU 0.043 32 0.3 0.33 0.32 0.022T+24.76 1.751 0.0417
    PMI 0.11 180 0.29 3.55 50 2.0 0.0295
    Notes: ρ—Density; E—Elastic modulus; v—Poisson’s ratio; Sc, Sy—Compressive strength and yield strength, respectively; λ—Thermal expansion coefficient; C—Specific heat capacity; k—Coefficient of heat conductivity; T—Temperature; GFRP—Glass fiber reinforced plastic; RPU—Rigid polyurethane; PMI—Polymethacrylimide.
    下载: 导出CSV

    表  3  共底结构前八阶屈曲临界载荷

    Table  3.   First eight critical buckling loads for common bulkhead structure

    N=1N=2N=3N=4N=5N=6N=7N=8
    PCr /MPa0.3420.3430.3670.3680.3780.3800.3880.392
    Note: PCr—Critical buckling load.
    下载: 导出CSV

    表  4  本文数值方法分析结果与文献[18]试验结果的对比

    Table  4.   Comparison between this numerical simulation results and experiment results in Ref. [18]

    Load caseUpper panelLower panel
    Experiment
    value/MPa
    Simulation
    value/MPa
    Relative
    error/%
    Experiment
    value/MPa
    Simulation
    value /MPa
    Relative
    error/%
    LT filling −172.0 −185.6 7.9 178.7 180.9 1.3
    LT, P1=0.4 MPa, P2=0.47 MPa −174.0 −188.1 8.1 202.6 208.2 2.8
    LT, P1=0.56 MPa, P2=0.658 MPa −177.2 −184.6 4.2 203.0 227.9 12.3
    LT, P1=0.4 MPa, P2=0.23 MPa −250.7 −273.0 8.9 151.6 164.0 8.2
    Notes: LT—Low temperature; P1, P2—Pressure of kerosene tank and oxygen tank, respectively.
    下载: 导出CSV
  • [1] 谢福寿, 厉彦忠, 王磊, 等. 低温推进剂过冷技术研究[J]. 航空动力学报, 2017, 32(3):762-768.

    XIE Fushou, LI Yanzhong, WANG Lei, et al. Study on subcooled technology for cryogenic propellants[J]. Journal of Aerospace Power,2017,32(3):762-768(in Chinese).
    [2] 侍野, 唐一华, 刘畅, 等. 低温推进剂集成管理技术的发展与启示[J]. 宇航总体技术, 2019, 3(2):54-61.

    SHI Ye, TANG Yihua, LIU Chang, et al. Development and revelation of integrated vehicle fluids[J]. Astronautical Systems Engineering Technology,2019,3(2):54-61(in Chinese).
    [3] FREY B, WESSELS W, EBELING W D, et al. Thermal control of the cryogenic upper stage of ARIANE 5 midlife evolution[C]//42nd International Conference on Environmental Systems. California: American Institute for Aeronautics and Astronautics, 2012, 3475: 1-14.
    [4] KUTTER B, ZEGLER F, LUCAS S, et al. Atlas centaur extensibility to long-duration in-space applications[C]//Space 2005. California: American Institute for Aeronautics and Astronautics, 2005, 6738: 1-12.
    [5] 唐玉花, 狄文斌, 刘靖华. 液体运载火箭一维纵横扭一体化建模技术[J]. 宇航学报, 2017, 38(1):89-96. doi: 10.3873/j.issn.1000-1328.2017.01.012

    TANG Yuhua, DI Wenbin, LIU Jinghua. A one-dimension longitudinal-lateral-torsional integrated modeling technique for liquid-propellant launch vehicle[J]. Journal of Astronautics,2017,38(1):89-96(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.01.012
    [6] VIETZE M, MUNDT C, WEILAND S. Investigation of thermal characteristics of sandwich common bulkhead equipped launcher tank[J]. Journal of Spacecraft and Rockets,2017,54(1):67-74. doi: 10.2514/1.A33595
    [7] LIU Z, LI Y Z, ZHOU G Q. Study on thermal stratification in liquid hydrogen tank under different gravity levels[J]. International Journal of Hydrogen Energy,2018,43(19):9369-9378. doi: 10.1016/j.ijhydene.2018.04.001
    [8] FISCHER, WOLFGANG P P. Development of cryogenic insulations for launcher upper stages[C]//44th International Conference on Environmental Systems. Arizona: 2014, 142: 1-14.
    [9] 刘展, 厉彦忠, 王磊, 等. 在轨运行低温液氢箱体蒸发量计算与增压过程研究[J]. 西安交通大学学报, 2015, 49(2):135-140.

    LIU Zhan, LI Yanzhong, WANG Lei, et al. Evaporation calculation and pressurization process of on-orbit cryogenic liquid hydrogen storage tank[J]. Journal of Xi’an Jiaotong University,2015,49(2):135-140(in Chinese).
    [10] 李平岐, 何巍, 杨云飞. 液体运载火箭长细比设计研究[J]. 宇航总体技术, 2019, 3(3):16-22.

    LI Pingqi, HE Wei, YANG Yunfei. The research of liquid launch vehicle slenderness ratio design[J]. Astronautical Systems Engineering Technology,2019,3(3):16-22(in Chinese).
    [11] AEROSPACE M M. Titan 3E/Centaur D-1T systems summary, NASA-CR-141014[R]. Washington: NASA, 1973.
    [12] HEALD D A. Reusable centaur study, NASA-CR-120373[R]. Washington: NASA, 1974.
    [13] WHITEHEAD J. Mass breakdown of the Saturn V[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Alabama: American Institute for Aeronautics and Astronautics, 2000, 3141: 1-11.
    [14] RAVET L. The ARIANE 5 launcher improvements[J]. Air & Space Europe,2000,2(2):68-72.
    [15] BIGGS R, An integrated airframe experiment for future responsive access to space applications[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. California: American Institute for Aeronautics and Astronautics, 2009, 2630: 1-12.
    [16] BIGGS R, MCCANDLESS M , COCHRAN R. Structural efficiency of integrated composite structures for future space launch vehicle airframe applications[C]//AIAA SPACE 2011 Conference & Exposition. California: American Institute for Aeronautics and Astronautics, 2011, 7278: 1-17.
    [17] SZELINSKI B, LANGE H, SACHER H, et al. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank[J]. Acta Astronautica,2012,81(1):200-213. doi: 10.1016/j.actaastro.2012.06.025
    [18] 李茂, 韩涵, 唐杰, 等. 大温差隔热共底在运载贮箱中的应用研究[J]. 上海航天, 2016, 33(s1):43-49.

    LI Mao, HAN Han, TANG Jie, et al. Application of PMI foam cored sandwich bulkhead tank in launch vehicle[J]. Aerospace Shanghai,2016,33(s1):43-49(in Chinese).
    [19] 李照谦, 南博华, 何腾锋, 等. 新一代运载火箭贮箱大温差泡沫夹层共底研制[J]. 宇航材料工艺, 2016, 46(4):68-72. doi: 10.3969/j.issn.1007-2330.2016.04.017

    LI Zhaoqian, NAN Bohua, HE Tengfeng, et al. Development of large temperature difference foam sandwich co-bulkhead of cryogenic tank for new-generation launch vehicle[J]. Aerospace Materials & Technology,2016,46(4):68-72(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.04.017
    [20] 孙培杰, 李鹏, 张振涛, 等. 新一代运载火箭共底贮箱隔热性能试验及环境预示[J]. 上海航天, 2014, 31(5):54-59. doi: 10.3969/j.issn.1006-1630.2014.05.011

    SUN Peijie, LI Peng, ZHANG Zhentao, et al. Experimental and numerical investigation of heat insulation performances of coplanar tanks in new generation launch vehicle[J]. Aerospace Shanghai,2014,31(5):54-59(in Chinese). doi: 10.3969/j.issn.1006-1630.2014.05.011
    [21] LI Z Q, NAN B H, HE T F, et al. Study of bonding technology and property of foam-sandwich co-bulkhead of cryogenic tank on launch vehicle[J]. Materials Science Forum, 2015, 817: 639-644.
    [22] 闫指江, 吴胜宝, 赵一博, 等. 应用于低温推进剂在轨贮存的组合绝热材料综述[J]. 载人航天, 2016, 22(3):28-32.

    YAN Zhijiang, WU Shengbao, ZHAO Yibo, et al. Review of assembled thermal insulating materials applied for on-orbit cryogenic propellant storage[J]. Manned Spaceflight,2016,22(3):28-32(in Chinese).
    [23] 商晋, 吕翠, 伍继浩. 聚氨酯硬质泡沫的低温应用研究现状[J]. 低温与超导, 2017, 45(10):14-19.

    SHANG Jin, LV Cui, WU Jihao. Cryogenic application of rigid polyurethane foam[J]. Cryogenics & Superconductivity,2017,45(10):14-19(in Chinese).
    [24] KAUSAR A. Polyurethane composite foams in high performance applications: a review[J]. Polymer Plastics Technology & Engineering,2018,57(4):346-369.
    [25] 孙小伟, 孙军坤, 俞炜, 等. LNG船货物围护系统用硬质聚氨酯绝热材料制备和性能研究[J]. 聚氨酯工业, 2018, 33(3):5-9. doi: 10.3969/j.issn.1005-1902.2018.03.002

    SUN Xiaowei, SUN Junkun, YU Wei, et al. Preparation and performance of the rigid polyurethane foams for cargo containment system of LNGC[J]. Polyurethane Industry,2018,33(3):5-9(in Chinese). doi: 10.3969/j.issn.1005-1902.2018.03.002
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  1154
  • HTML全文浏览量:  416
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 录用日期:  2020-07-12
  • 网络出版日期:  2020-07-14
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回