留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒激光制备润滑表面及光响应液滴操控

肖轶 周丽丽 徐呈艺 张瑞华 吴思竹

肖轶, 周丽丽, 徐呈艺, 等. 基于飞秒激光制备润滑表面及光响应液滴操控[J]. 复合材料学报, 2021, 38(2): 517-525. doi: 10.13801/j.cnki.fhclxb.20200713.003
引用本文: 肖轶, 周丽丽, 徐呈艺, 等. 基于飞秒激光制备润滑表面及光响应液滴操控[J]. 复合材料学报, 2021, 38(2): 517-525. doi: 10.13801/j.cnki.fhclxb.20200713.003
XIAO Yi, ZHOU Lili, XU Chengyi, et al. Preparation of slippery surface based on femtosecond laser toward photo-induced droplet manipulation[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 517-525. doi: 10.13801/j.cnki.fhclxb.20200713.003
Citation: XIAO Yi, ZHOU Lili, XU Chengyi, et al. Preparation of slippery surface based on femtosecond laser toward photo-induced droplet manipulation[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 517-525. doi: 10.13801/j.cnki.fhclxb.20200713.003

基于飞秒激光制备润滑表面及光响应液滴操控

doi: 10.13801/j.cnki.fhclxb.20200713.003
基金项目: 江苏省自然科学基金面上项目(BK20191209);江苏省高校“青蓝工程”项目;中央高校基本科研业务费专项资金(PA2020GDKC0010);南通市“226工程”项目(2018-1)
详细信息
    通讯作者:

    吴思竹,博士,副教授,研究方向为激光微纳制备  E-mail:sizhuwu@hfut.edu.cn

  • 中图分类号: TB381;TB391

Preparation of slippery surface based on femtosecond laser toward photo-induced droplet manipulation

  • 摘要: 运用光诱导在润滑剂注入型光滑多孔表面(SLIPS)实现液滴动态操控,具有非接触性和不受时空间限制等显著优势,但传统光响应SLIPS制备过程需要模板转印及氟化处理,操作繁琐且不环保。本文利用飞秒激光正交线扫描和光热响应Fe3O4纳米颗粒制备出仿猪笼草光热响应SLIPS,通过调整单侧近红外光触发位置,利用液滴润湿梯度和内部马兰格尼流,可以实现液滴运动状态和运动路径的动态操控。通过分析Fe3O4含量、润滑剂流变性能及液滴类型对液滴移动速率和响应时间的影响,对制备SLIPS的液滴操控性能进行优化,进而展现仿猪笼草光热响应SLIPS在芯片实验室、微流体反应器、生物医学工程等领域的广泛应用价值。

     

  • 图  1  掺杂Fe3O4纳米颗粒的润滑剂注入型光滑多孔表面(SLIPS)制备过程 (a) 和飞秒激光刻蚀制备的超疏水微柱阵列薄膜电镜图((b)~(d))

    Figure  1.  Facile fabrication of Fe3O4NPs-doped slippery lubricant-infused porous surface (SLIPS) (a) and SEM images of the as-prepared superhydrophobic micropillar-arrayed film by femtosecond laser cross-scanning ((b)-(d))

    PDMS—Polydimethylsiloxane

    图  2  基于近红外响应(NIR)在SLIPS界面进行液滴操控

    Figure  2.  Droplet manipulation on night-time ozone profile (NIR)-responsive SLIPS

    图  3  无外界近红外刺激 (a) 和有外界近红外刺激时 (b) 润湿梯度差异原理

    Figure  3.  Mechanism illustration for the wettability gradient variation without (a) and with (b) a unilateral NIR-stimuli

    图  4  Fe3O4含量和液滴体积 (a) 及近红外光辐射距离 (b) 对液滴运动的影响

    Figure  4.  Effect of Fe3O4-doped content and droplet volume (a) and irradiation distance (b) on droplet’s motion

    图  5  Fe3O4含量 (a) 及液滴体积 (b) 对液滴响应时间的影响

    Figure  5.  Influence of Fe3O4NPs content (a) and droplet volume (b) on droplet’s response time

    图  6  润滑剂黏度 (a) 和表面张力 (b) 对液滴运动的影响(含量为5wt%Fe3O4的SLIPS)

    Figure  6.  Influence of lubricant’s viscosity (a) and surface tension (b) on droplet’s motion (5wt%Fe3O4-doped SLIPS)

    图  7  在5wt%Fe3O4的SLIPS上受近红外驱使的五种液滴随着表面张力不断增大的平均滑动速度变化

    Figure  7.  Corresponding variations of NIR-actuating droplet’s average sliding velocity with the increasing of five droplet’s surface tension on 5wt%Fe3O4-doped SLIPS

  • [1] BOHN H F, FEDERLE W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface[J]. Proceedings of the National Academy of Sciences,2004,101(39):14138-14143. doi: 10.1073/pnas.0405885101
    [2] MIGUEL S, HEHN A, BOURGAUD, et al. Nepenthes: State of the art of an inspiring plant for biotechnologists[J]. Journal of Biotechnology,2018,265:109-115. doi: 10.1016/j.jbiotec.2017.11.014
    [3] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature,2011,477(7365):443-447. doi: 10.1038/nature10447
    [4] DANIEL D, MANKIN M N, BELISLE R A, et al. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures[J]. Applied Physics Letters,2013,102(23):231603. doi: 10.1063/1.4810907
    [5] YAO X, HU Y, GRINTHAL A, et al. Adaptive fluid-infused porous films with tunable transparency and wettability[J]. Nature Materials,2013,12(6):529-534. doi: 10.1038/nmat3598
    [6] ROSENBERG B J, VAN BUREN T, FU M K, et al. Turbulent drag reduction over air- and liquid-impregnated surfaces[J]. Physics of Fluids,2016,28(1):015103. doi: 10.1063/1.4939272
    [7] BOREYKO J B, POLIZOS G, DATSKOS P G, et al. Air-stable droplet interface bilayers on oil-infused surfaces[J]. Proceedings of the National Academy of Sciences,2014,111(21):7588-7593. doi: 10.1073/pnas.1400381111
    [8] 韦存茜, 赵镭, 王永香, 等. 仿生超浸润材料在防覆冰涂层中的应用[J]. 涂料工艺, 2019, 49(4):80-87.

    WEI C Q, ZHAO L, WANG Y X, et al. Application of bio-inspired superwetting materials in anti-icing coatings[J]. Paint & Coatings Industry,2019,49(4):80-87(in Chinese).
    [9] IRAJIZAD P, HASNAIN M, FAROKHNIA N, et al. Magnetic slippery extreme icephobic surfaces[J]. Nature Communications,2016,7:13395. doi: 10.1038/ncomms13395
    [10] YIN J L, MEI M L, LI Q L, et al. Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique[J]. Scientific Reports,2016,6:25924. doi: 10.1038/srep25924
    [11] LIU H, ZHANG P, LIU M, et al. Organogel-based thin films for self- cleaning on various surfaces[J]. Advanced Materials,2013,25(32):4477-4481. doi: 10.1002/adma.201301289
    [12] 周明, 郑傲然, 杨加宏. 复制模塑法制备超疏水表面及其应用[J]. 物理化学学报, 2007, 23(8):1296-1300. doi: 10.3866/PKU.WHXB20070831

    ZHOU M, ZHENG A R, YANG J H. Superhydrophobic surfaces fabricated by replica molding andits applications[J]. Acta Physico-Chimica Sinica,2007,23(8):1296-1300(in Chinese). doi: 10.3866/PKU.WHXB20070831
    [13] KOVALENKO Y, SOTIRI I, TIMONEN J V I, et al. Bacterial interactions with immobilized liquid layers[J]. Advanced Healthcare Materials,2016,6(5):1600948.
    [14] ANAND S, PAXSON A T, DHIMAN R, et al. Enhanced condensation on lubricant-impregnated nanotextured surfaces[J]. ACS Nano,2012,6(11):10122-10129. doi: 10.1021/nn303867y
    [15] KAJIYA T, SCHELLENBERGER F, PAPSDOPOULOS P, et al. 3D imaging of water-drop condensation on hydro-phobic and hydrophilic lubricant-impregnated surfaces[J]. Scientific Reports,2016,6:23687. doi: 10.1038/srep23687
    [16] FU M K, ARENAS I, LEONARDI S, et al. Liquid-infused surfaces as a passive method of turbulent drag reduction[J]. Journal of Fluid Mechanics,2017,824(10):688-700.
    [17] WANG Y, ZHANG H, LIU X, et al. Slippery liquid-infused substrates: A versatile preparation, unique anti-wetting and drag-reduction effect on water[J]. Journal of Materials Chemistry A,2016,4(7):2524-2529. doi: 10.1039/C5TA09936F
    [18] ZHAO H, SUN Q, DENG X, et al. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces[J]. Advanced Materials,2018,30(29):1802141. doi: 10.1002/adma.201802141
    [19] WANG Y, QIAN B, LAI C, et al. Flexible slippery surface to manipulate dropletcoalescence and sliding, and its practicability in wind-resistant water collection[J]. ACS Applied Materials & Interfaces,2017,9(29):24428-24432.
    [20] MANABE K, MATSUBAYASHI T, TENJIMBAYASHI M, et al. Controllable broadband optical transparencyand wettability switching of temperature-activated solid/liquid-infused nanofibrous membranes[J]. ACS Nano,2016,10(10):9387-9396. doi: 10.1021/acsnano.6b04333
    [21] ZHENG Y, LIU X, XU J, et al. Thermo-responsive mobile interfaces with switchable wettability, optical properties, and penetrability[J]. ACS Applied Materials & Interfaces,2017,9(40):35483-35491.
    [22] WANG Z B, HENG L P, JIANG L. Effect of lubricant viscosity on the self-healing properties and electrically driven sliding of droplets on anisotropic slippery surfaces[J]. Journal of Materials Chemistry A,2018,6(8):3414-3421. doi: 10.1039/C7TA10439A
    [23] CHE P, HENG L, JIANG L. Lubricant-infused anisotropic porous surface design of reduced graphene oxide toward electrically driven smart control of conductive droplets motion[J]. Advanced Functional Materials,2017,27(22):1606199. doi: 10.1002/adfm.201606199
    [24] 程甜甜. 磁响应仿生多功能涂层的制备及其防覆冰性能[D]. 杭州: 浙江大学, 2016.

    CHENG T. Magnetic particles based multifunctional surface for anti-icing and thermal responsive de-icing performance[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [25] CAO M, JIN X, PENG Y, et al. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia[J]. Advanced Materials,2017,29(23):1606869. doi: 10.1002/adma.201606869
    [26] WOOH S, BUTT H J. A photocatalytically active lubricant-impregnated surface[J]. Angewandte Chemie,2017,129(18):5047-5051. doi: 10.1002/ange.201611277
    [27] WANG Z, LIU Y, GUO P, et al. Porous films: Photoelectric synergetic responsive slippery surfaces based on tailored anisotropic films generated by interfacial directional freezing[J]. Advanced Functional Materials,2018,28(49):1870350. doi: 10.1002/adfm.201870350
    [28] GUO P, WANG Z, HENG L, et al. Magnetocontrollable droplet and bubble manipulation on a stable amphibious slippery gel surface[J]. Advanced Functional Materials,2019,29:1808717. doi: 10.1002/adfm.201808717
    [29] HAN K, HENG L, ZHANG Y, et al. Slippery surface based on photoelectric responsive nanoporous composites with optimal wettability region for droplets' multifunctional manipulation[J]. Advanced Science,2019,6:1801231. doi: 10.1002/advs.201801231
    [30] GAO C, WANG L, LIN Y, et al. Droplets manipulated on photothermal organogel surfaces[J]. Advanced Function Materials,2018,28(35):1803072. doi: 10.1002/adfm.201803072
    [31] WANG J, GAO W, ZHANG H, et al. Programmable wettability on photo-controlled graphene film[J]. Science Advances,2018,4(9):eaat7392. doi: 10.1126/sciadv.aat7392
    [32] XU Z, SHEN C, HOU Y, et al. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles[J]. Chemistry of Materials,2009,21(9):1778-1780. doi: 10.1021/cm802978z
    [33] VOROBYEV A Y, GUO C. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews,2013,7(3):385-407.
    [34] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature,2003,424(6950):831-838. doi: 10.1038/nature01938
    [35] HAN K, HENG L, ZHANG Y, et al. Slippery surface based on photoelectric responsive nanoporous composites with optimal wettability region for droplets' multifunctional manipulation[J]. Advanced Science,2018,6(1):1801231.
    [36] GOOD R J. A thermodynamic derivation of wenzel′s modification of Young′s equation for contact angles; together with a theory of hysteresis[J]. Journal of the American Chemical Society,1952,4(20):5041-5042.
    [37] CHAUDHURY M K, WHITESIDES G M. How to make water run uphill[J]. Science,1992,256(5063):1539-1541. doi: 10.1126/science.256.5063.1539
    [38] IRAJIZAD P, RAY S, FAROKHNIA N, et al. Remote droplet manipulation on self-healing thermally activated magnetic slippery surfaces[J]. Advanced Materials Interfaces,2017,4(12):1700009. doi: 10.1002/admi.201700009
    [39] BJELOBRK N, GIRARD H L, SUBRAMANYAM S B, et al. Thermocapillary motion on lubricant-impregnated surfaces[J]. Physical Review Fluids,2016,1(6):063902. doi: 10.1103/PhysRevFluids.1.063902
    [40] BANUPRASAD T N, VINAYA T V, SUBASH C K, et al. Fast transport of water droplets over a thermo-switchable surface using rewritable wettability gradient[J]. ACS Applied Materials & Interfaces,2017,9(33):28046-28054.
    [41] HOU Y P, XUE B L, GUAN S, et al. Temperature-controlled directional spreading of water on a surface with high hysteresis[J]. NPG Asia Materials,2013,5(12):162-168. doi: 10.1038/am.2013.70
    [42] WU S, ZHOU L, CHEN C, et al. Photothermal actuation of diverse liquids on Fe3O4-doped slippery surface for electric switch and cell culture[J]. Langmuir,2019,35(43):13915-13922. doi: 10.1021/acs.langmuir.9b02068
    [43] CHEN H, ZHANG P, ZHANG L, et al. Continuous directional water transport on the peristome surface of nepenthes alata[J]. Nature,2016,532(7597):85-89. doi: 10.1038/nature17189
  • 加载中
图(7)
计量
  • 文章访问数:  975
  • HTML全文浏览量:  451
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 录用日期:  2020-07-10
  • 网络出版日期:  2020-07-13
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回