留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不连续界面相Al4C3对SiC/Al复合材料界面结合影响的第一性原理及实验

邹爱华 周贤良 康志兵 吴开阳 苏玉琴

邹爱华, 周贤良, 康志兵, 等. 不连续界面相Al4C3对SiC/Al复合材料界面结合影响的第一性原理及实验[J]. 复合材料学报, 2021, 38(3): 824-831. doi: 10.13801/j.cnki.fhclxb.20200713.002
引用本文: 邹爱华, 周贤良, 康志兵, 等. 不连续界面相Al4C3对SiC/Al复合材料界面结合影响的第一性原理及实验[J]. 复合材料学报, 2021, 38(3): 824-831. doi: 10.13801/j.cnki.fhclxb.20200713.002
ZOU Aihua, ZHOU Xianliang, KANG Zhibing, et al. Effect of discontinuous interfacial phase Al4C3 on interface bonding of SiC/Al composites: A first-principle and experiment[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 824-831. doi: 10.13801/j.cnki.fhclxb.20200713.002
Citation: ZOU Aihua, ZHOU Xianliang, KANG Zhibing, et al. Effect of discontinuous interfacial phase Al4C3 on interface bonding of SiC/Al composites: A first-principle and experiment[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 824-831. doi: 10.13801/j.cnki.fhclxb.20200713.002

不连续界面相Al4C3对SiC/Al复合材料界面结合影响的第一性原理及实验

doi: 10.13801/j.cnki.fhclxb.20200713.002
基金项目: 江西省重点研发计划项目(20192BBE50001);江西省自然青年基金(20171BAB216003);博士启动金(EA201801216)
详细信息
    通讯作者:

    邹爱华,博士,副教授,硕士生导师,研究方向为金属基复合材料 E-mail:aihua553030@163.com

  • 中图分类号: TB331

Effect of discontinuous interfacial phase Al4C3 on interface bonding of SiC/Al composites: A first-principle and experiment

  • 摘要: 采用密度泛函理论的第一性原理及实验相结合的方法,探讨了不连续界面相Al4C3对SiC/Al复合材料界面结合的影响,并与无界面新相生成时进行对比。研究表明,当Al(111)表面吸附C原子时,在Bridge位置上吸附C原子最为稳定;随着C覆盖率的增加,C原子吸附能逐渐减小;当界面相呈不连续分布时,界面由原来的SiC/Al转变为(SiC+Al4C3)/Al,界面黏着功由原来的0.851 J/m2增加至1.231 J/m2,这主要由于当C原子在Al表面吸附时,C原子和Al原子间形成共价键和离子键,且与界面处的Si原子也形成共价键,从而促进界面结合。利用第一性原理计算的SiC/Al和(SiC+Al4C3)/Al体系黏着功与实验值较为接近,且变化规律相同,具有较高的参考价值。

     

  • 图  1  Al(111)吸附C原子结构模型:(a) C原子在表面Al原子正上方;(b) Al原子在界面两个Al原子中间上方;(c) Al原子在四个Al原子中心位置上方

    Figure  1.  Atomic structure models of Al(111) adsorbing C: (a) Top; (b) Bridge; (c) Hollow

    图  2  表面处Al和C原子的局域电子态密度

    Figure  2.  Local electron densities of states of Al and C atoms on surface

    图  3  温度在800~1000℃范围内(SiC+Al4C3)/Al液滴中心处腐蚀后的界面微观形貌及成分分析:(a) 800℃;(b) 900℃;(c) 1000℃;(d) 1000℃

    Figure  3.  Interface morphologies and composition at center of (SiC+Al4C3)/Al droplet after corrosion at 800–1000℃: (a) 800℃; (b) 900℃; (c) 1000℃; (d) 1000℃

    图  4  (SiC+Al4C3)/Al界面结合原子结构

    Figure  4.  Interface atomic structure between (SiC+Al4C3) and Al

    图  5  (SiC+Al4C3)/Al界面处各原子局域态密度:(a) C原子;(b) C原子附近Al原子;(c) 界面处Si原子;(d) 远离C原子的Al原子

    Figure  5.  Local densities of states of atoms at interface (SiC+Al4C3)/Al: (a) C atom; (b) C atom near Al atom; (c) Si atom at interface; (d) Al atom far from C atom

    图  6  (SiC+Al4C3)/Al界面差分电荷密度

    Figure  6.  Differential charge density of (SiC+Al4C3)/Al interface

    图  7  800~1000℃温度范围内纯Al在α-SiC基板上接触角随时间的变化

    Figure  7.  Variations of contact angle with time for molten Al on α-SiC substrate at 800–1000℃

    表  1  不同覆盖率下C原子在Al(111)表面的吸附能

    Table  1.   Adsorption energies of C atom on Al (111) surface with different coverages eV/atom

    CoverageTopBridgeHollow
    0.25 5.97 7.04 6.89
    0.50 5.13 6.37 5.32
    1.00 4.57 5.67 5.01
    下载: 导出CSV

    表  2  SiC/Al和(SiC+Al4C3)/Al界面间距d0和界面黏着功Wad

    Table  2.   Ideal interface spacings d0 and works of interfacial adhesion Wad of SiC/Al and (SiC+Al4C3)/Al interface

    Modeld0 (Before optimization)/nmd0 (After optimization)/nmWad/
    (J·m−2)
    SiC/Al 0.2 0.190 0.851
    (SiC+Al4C3)/Al 0.2 0.183 1.231
    下载: 导出CSV

    表  3  不同体系界面黏着功Wad

    Table  3.   Works of adhesion of different interface systems

    ModelThis expriment Wad/(J·m−2)First principles Wad/(J·m−2)Other works Wad/(J·m−2)
    SiO2/Al 0.956[22]/1.066[23]
    SiC/Al 0.839 0.851
    (SiC+Al4C3)/Al 1.377 1.231 1.402[24]
    下载: 导出CSV
  • [1] TENG F, YU K, LUO J, et al. Microstructures and properties of Al-50% SiC composites for electronic packaging applications[J]. Transactions of Nonferrous Metals Society of China,2016,26(10):2647-2652. doi: 10.1016/S1003-6326(16)64358-3
    [2] 许小静, 张绪虎, 王亮, 等. 中低体积分数SiCP/Al在航空航天领域的应用与发展[J]. 宇航材料工艺, 2011, 41(3):5-7. doi: 10.3969/j.issn.1007-2330.2011.03.002

    XU Xiaojing, ZHANG Xuhu, WANG Liang, et al. Development and application of medium/low volume-fraction SiCP/Al composites in aerospace field[J]. Aerospace Materials & Technology,2011,41(3):5-7(in Chinese). doi: 10.3969/j.issn.1007-2330.2011.03.002
    [3] HUNT M. Electronic packaging[J]. Materials Engineering,1991,108(1):24-25.
    [4] LEE H S, JEON K Y, KIM H Y, et al. Fabrication process and thermal properties of SiCP/Al metal matrix composites for electronic packaging applications[J]. Journal of Materials Science,2000,35(24):6231-6236. doi: 10.1023/A:1026749831726
    [5] WANG K K, KANG Y L, SONG P G, et al. Preparation of SiCP/A356 electronic packaging materials and its thixo-forging[J]. Transactions of Nonferrous Metals Society of China,2010,20(3):988-992.
    [6] LI S, XIONG D G, LIU M, et al. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure[J]. Ceramics International,2014,40(5):7539-7544. doi: 10.1016/j.ceramint.2013.12.105
    [7] 刘俊友, 刘英才, 刘国权, 等. SiC颗粒氧化行为及SiCP/铝基复合材料界面特征[J]. 中国有色金属学报, 2002, 12(5):961-966. doi: 10.3321/j.issn:1004-0609.2002.05.021

    LIU Junyou, LIU Yingcai, LIU Guoquan, et al. Oxidation behavior of silicon carbide particales and their interfacial characterization in aluminum matrix composites[J]. The Chinese Journal of Nonferrous Metals,2002,12(5):961-966(in Chinese). doi: 10.3321/j.issn:1004-0609.2002.05.021
    [8] REN S B, HE X B, QU X H, et al. Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCP/Al composites[J]. Composites Science and Technology,2007,67(10):2103-2113. doi: 10.1016/j.compscitech.2006.11.006
    [9] AGUILAR-MARTÍNEZ J A, PECH-CANUT M I, RODRIGUEZ-REYES M, et al. Effect of processing parameters on the degree of infiltration of SiCP preforms by Al-Si-Mg alloys[J]. Materials Letters,2003,57(26-27):4332-4335. doi: 10.1016/S0167-577X(03)00323-9
    [10] MOLINA J M, SARAVANAN R A, ARPÓN R, et al. Pressure infiltration of liquid aluminium into packed SiC particulate with a bimodal size distribution[J]. Acta Materialia,2002,50(2):247-257. doi: 10.1016/S1359-6454(01)00348-2
    [11] AKSSAY L A, HOGE C E, PASK J A. Wetting under chemical equilibrium and nonequilibrium conditions[J]. The Journal of Physical Chemistry,1974,78(12):1178-1183. doi: 10.1021/j100605a009
    [12] LAURENT V, CHATAIN D, EUSTATHOPOULOS N. Wettability of SiC by aluminium and Al-Si alloys[J]. Journal of Materials Science,1987,22(1):244-250. doi: 10.1007/BF01160579
    [13] LIU X H, LI J J, LIU E Z, et al. Effectively reinforced load transfer and fracture elongation by forming Al4C3 for in-situ synthesizing carbon nanotube reinforced Al matrix composites[J]. Materials Science and Engineering A,2018,718:182-189. doi: 10.1016/j.msea.2018.01.065
    [14] LIU X Q, LI C J, ECKERT J, et al. Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites[J]. Materials Characterization,2017,133:122-132. doi: 10.1016/j.matchar.2017.09.036
    [15] YAN L P, TAN Z Q, JI G, et al. A quantitative method to characterize the Al4C3-formed interfacial reaction: The case study of MWCNT/Al composites[J]. Materials Characterization,2016,112:213-218. doi: 10.1016/j.matchar.2015.12.031
    [16] LI D S, YE Y, LIAO X J, et al. A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites[J]. Nano Research,2018,11(3):1642-1650. doi: 10.1007/s12274-017-1779-9
    [17] WANG C C, CHEN G Q, WANG X, et al. Effect of Mg content on the thermodynamics of interface reaction in Cf/Al composite[J]. Metallurgical and Materlals Transactions A,2012,43(7):2514-2519. doi: 10.1007/s11661-012-1090-z
    [18] KAWAI C. Effect of interfacial reaction on the thermal conductivity of Al-SiC composites with SiC dispersions[J]. Journal of the American Ceramic Society,2001,84(4):896-898. doi: 10.1111/j.1151-2916.2001.tb00764.x
    [19] JONES R O, GUNNARSSON O. The density functional formalism, its applications and prospects[J]. Reviews of Modern Physics,1989,61(3):689-746. doi: 10.1103/RevModPhys.61.689
    [20] HONG T, SIMTH J R, SROLVVITZ D J. Theory of meta-ceramic adhesion[J]. Acta Metallurgica et Materialia,1995,43(7):2721-2730. doi: 10.1016/0956-7151(94)00457-S
    [21] 邹爱华, 周贤良, 康志兵, 等. 基体合金元素对SiC/Al界面结合影响的第一性原理及实验研究[J]. 无机材料学报, 2019, 34(11): 1167-1174.

    ZOU Aihua, ZHOU Xianliang, KANG Zhibing, et al. Effect of alloy elements on SiC/Al interface: A first-principle and experimental study[J]. Journal of Inorganic Materials, 2019, 34(11): 1167-1174(in Chinese).
    [22] 陈建, 顾明元, 潘复生. 活性金属/陶瓷粘着功[J]. 复合材料学报, 2003, 20(3): 85-88.

    CHEN Jian, GU Mingyuan, PAN Fusheng. Work of adhesion for reactive metal/ceramic systems[J]. Acta Materiae Compositae Sinica, 2003, 20(3): 85-88(in Chinese).
    [23] CONG X S, SHEN P, WANG Y, et al. Wetting of polycrystalline SiC by molten Al and Al-Si alloys[J]. Applied Surface Science,2014,317:140-146. doi: 10.1016/j.apsusc.2014.08.055
    [24] FANG X, FAN T X, ZHANG D. Work of Adhesion in Al/SiC composites with alloying element addition[J]. Metallurgical and Materials Transactions A,2013,44(1):5192-5201.
    [25] FERRO A C, DERBY B. Wetting behavior in the Al-Si/SiC system: Interface reactions and solubility effects[J]. Acta Materialia,1995,43(8):3061-3073.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1008
  • HTML全文浏览量:  385
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-27
  • 录用日期:  2020-06-28
  • 网络出版日期:  2020-07-13
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回