留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏心受拉作用下预应力CFRP筋-型钢混凝土构件抗裂试验

张鹏 桂金洋 邓宇 沈民合 孙飞 赵晓冬

张鹏, 桂金洋, 邓宇, 等. 偏心受拉作用下预应力CFRP筋-型钢混凝土构件抗裂试验[J]. 复合材料学报, 2021, 38(3): 920-931. doi: 10.13801/j.cnki.fhclxb.20200710.001
引用本文: 张鹏, 桂金洋, 邓宇, 等. 偏心受拉作用下预应力CFRP筋-型钢混凝土构件抗裂试验[J]. 复合材料学报, 2021, 38(3): 920-931. doi: 10.13801/j.cnki.fhclxb.20200710.001
ZHANG Peng, GUI Jinyang, DENG Yu, et al. Experiment on crack resistance of prestressed CFRP tendons-steelreinforced concrete members under eccentric tension[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 920-931. doi: 10.13801/j.cnki.fhclxb.20200710.001
Citation: ZHANG Peng, GUI Jinyang, DENG Yu, et al. Experiment on crack resistance of prestressed CFRP tendons-steelreinforced concrete members under eccentric tension[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 920-931. doi: 10.13801/j.cnki.fhclxb.20200710.001

偏心受拉作用下预应力CFRP筋-型钢混凝土构件抗裂试验

doi: 10.13801/j.cnki.fhclxb.20200710.001
基金项目: 国家自然科学基金(51768008);中国博士后科学基金(2017M613273XB);广西自然科学基金(2019JJA160137)
详细信息
    通讯作者:

    桂金洋,硕士,研究方向为新型复合材料及预应力型钢混凝土组合结构 E-mail:jinyanggui1020@163.com

  • 中图分类号: TU398.903; TU317.1

Experiment on crack resistance of prestressed CFRP tendons-steelreinforced concrete members under eccentric tension

  • 摘要: 为解决我国型钢混凝土桁架转换层拉杆及低层角柱在正常使用阶段易出现大面积拉裂缝的问题,以轻质高强、防腐的碳纤维增强树脂复合材料(CFRP)筋为预应力筋,提出可有效控制裂缝的预应力CFRP筋-型钢混凝土结构体系,并对其偏心受拉作用下的抗裂性能进行系统研究。以预应力水平、偏心距、纵筋直径及型钢翼缘厚度为主要参数制作11个构件,通过自行研发的拉-压转换桁架实现偏拉加载。结果表明:引入CFRP筋后CFRP筋-型钢混凝土构件抗裂度大幅提升,相较于普通偏拉构件,预应力大偏拉构件开裂荷载提高了64.8%~102.3%,预应力小偏拉构件提高了61.7%~117%,其抗裂性能与预应力水平、纵筋直径和型钢翼缘厚度正相关,与偏心距负相关。参照组合结构设计规范,提出构件开裂阶段中和轴的三种位置分布,并推导出开裂荷载公式,与试验值比较吻合度较高,可为其他复合材料筋在预应力偏拉体系的应用提供参考。

     

  • 图  1  预应力碳纤维增强树脂复合材料(CFRP)筋型钢混凝土试件设计详图

    Figure  1.  Detail design of prestressed carbon fiber reinforced polymer composite (CFRP) tendons-steel reinforced concrete specimens

    图  2  CFRP筋张拉装置

    Figure  2.  Tensioning device of CFRP tendons

    图  3  CFRP筋性能试验

    Figure  3.  Performance test of prestressed CFRP tendons

    图  4  拉-压转换加载装置

    Figure  4.  Loading device of tension-compression transfer

    图  5  预应力CFRP筋-型钢混凝土试件测点布置

    Figure  5.  Measuring points layout of prestressed CFRP tendons-steel reinforced concrete specimens

    图  6  CFRP筋预应力损失监测

    Figure  6.  Monitoring of prestress loss of CFRP tendons

    图  7  预应力CFRP筋-型钢混凝土试件极限形态的裂缝分布

    Figure  7.  Crack distribution of ultimate shape of prestressed CFRP tendons-steel/concrete specimens

    图  8  预应力CFRP筋-型钢混凝土试件裂缝宽度-荷载曲线

    Figure  8.  Crack width-load curves of prestressed CFRP tendons-steel/concrete specimens

    A—Ordinary axial member; B—Ordinary tension member; C—Prestress is 40%; D—Prestress is 60%; E—Prestress tension member with longitudinal reinforcement diameter of 10 mm; F—Prestress tension member with flange thickness of 8 mm

    图  9  预应力CFRP筋-型钢混凝土构件开裂荷载影响因素

    Figure  9.  Factors affecting cracking loads of prestressed CFRP tendons-steel/concrete members

    图  10  预应力CFRP筋-型钢混凝土构件换算截面

    Figure  10.  Conversion section of prestressed CFRP tendons-steel/concrete members

    图  11  中和轴位于截面外

    Figure  11.  Neutral axis lies outside the cross section

    图  12  中和轴位于截面内(不通过型钢)

    Figure  12.  Neutral axis is located in the cross section (not through the steel)

    图  13  中和轴位于截面内(通过型钢)

    Figure  13.  Neutral axis located in the cross section (through steel)

    表  1  预应力CFRP筋-型钢混凝土试件主要设计参数

    Table  1.   Main design parameters of prestressed CFRP tendons-steel reinforced concrete specimens

    Number$e$/mm$\lambda $/%$\rho $tf/mm
    APZ-6-6004C66
    SPZ-6-62004C66
    SPZ-6-6-4020404C66
    SPZ-6-6-6020604C66
    SPZ-10-6-4020404C106
    SPZ-6-8-4020404C68
    LPZ-6-68004C66
    LPZ-6-6-4080404C66
    LPZ-6-6-6080604C66
    LPZ-10-6-4080404C106
    LPZ-6-8-4080404C68
    Notes: e—Eccentricity; $\lambda $—Prestressed tension level; $\rho $—Steel longitudinal reinforcement; tf—Steel flange thickness; APZ—Axial tension; LPZ—Large tension; SPZ—Small tension.
    下载: 导出CSV

    表  2  CFRP筋分级张拉控制荷载

    Table  2.   Control loads of CFRP tendons by tension MPa

    Tension level0.20.40.60.81.01.05
    0.4fptk 5.9 11.8 17.6 23.5 29.4 30.9
    0.6fptk 8.8 17.6 26.5 35.3 44.1 46.3
    Note:fptk—Standard value of tensile strength of CFRP tendons.
    下载: 导出CSV

    表  3  材料力学性能指标

    Table  3.   Mechanical property indexs of materials

    CategoryNameE/GPafy/MPafu/GPaδ/%
    Prestressed tendon CFRP 154 1624 1.91
    Reinforcement C6 200 495 0.61 27.5
    C10 200 484 0.7 25.1
    Steel Q235 347 481 205 28.5
    Loading plate Q345 458 599 205 26.3
    Notes: E—Modulus of elasticity; fy —Yield strength; fu—Ultimate strength; δ—Elongation of material.
    下载: 导出CSV

    表  4  预应力CFRP筋-型钢混凝土构件开裂荷载

    Table  4.   Cracking loads of prestressed CFRP tendons-steel/concrete members

    Number${\sigma _l}$ (${\sigma _{l5}}$)/(N·mm−2)Ncr /kNVariation of Ncr /%
    ${\lambda _1}$${\lambda _2}$
    APZ-6-6 97 0
    SPZ-6-6 88 0 −9.3
    SPZ-6-6-40 178.2 (46.5) 145 64.8 49.5
    SPZ-6-6-60 218.5 (69.8) 178 102.0 83.5
    SPZ-10-6-40 164.1 (30.8) 155 76.1 59.8
    SPZ-6-8-40 175.3 (49.3) 145 84.8 49.5
    LPZ-6-6 47 0 −51.5
    LPZ-6-6-40 184.0 (62.4) 76 61.7 −21.6
    LPZ-6-6-60 191.0 (64.5) 102 117.0 5.2
    LPZ-10-6-40 166.6 (59.9) 81 72.3 −16.5
    LPZ-6-8-40 163.2 (47.9) 79 68.1 −18.6
    Notes: ${\sigma _l}$—Loss of full prestressed; ${\sigma _{l5}}$—Prestressed loss caused by prestressed relaxation, concrete shrinkage and creep; ${N_{\rm{cr} }}$—Cracking load; ${\lambda _1}$—Rate of cracking load variation of prestressed members compared with ordinary eccentric members; ${\lambda _2}$—Change rate of cracking load of prestressed and ordinary member compared with axial tension members.
    下载: 导出CSV

    表  5  预应力CFRP筋-型钢混凝土试件开裂荷载试验值与计算值

    Table  5.   Cracking load test values and calculation values of prestressed CFRP tendons-steel/concrete specimens

    NumberNcr,e/kNNcr,c/kNNcr,e/Ncr,cμ
    APZ-6-6 97.0 109.0 0.89
    SPZ-6-6 88.0 102.0 0.86 0.87
    SPZ-6-6-40 145.0 165.0 0.88
    SPZ -6-6-60 178.0 207.0 0.86
    SPZ -10-6-40 155.0 170.0 0.91
    SPZ -6-8-40 145.0 167.0 0.86
    LPZ -6-6 47.0 53.0 0.89 0.92
    LPZ -6-6-40 76.0 80.0 0.95
    LPZ -6-6-60 102.0 110.0 0.94
    LPZ -10-6-40 81.4 90.5 0.90
    LPZ -6-8-40 79.0 88.0 0.90
    Notes: Ncr,e—Cracking load test value; Ncr,c—Cracking load calculated value; μ—Mean value of Ncr,e and Ncr,c.
    下载: 导出CSV
  • [1] 王翠坤, 田春雨, 肖从真. 高层建筑中钢-混凝土混合结构的研究及应用进展[J]. 建筑结构, 2011, 41(11):28-33.

    WANG Cuikun, TIAN Chunyu, XIAO Congzhen. Development of research and application of concrete-steel hybrid high-rise building structures[J]. Building Structure,2011,41(11):28-33(in Chinese).
    [2] ZHANG S, ZHAO Z Z, HE X G. Flexural behavior of SRC columns under axial and bilateral loading[J]. Applied Mechanics and Materials, 2012, 166-169: 3383-3390.
    [3] 陈宗平, 徐定一, 郑巍, 等. 焊接栓钉型钢混凝土柱压-弯-剪-扭滞回性能试验研究[J]. 建筑结构学报, 2017, 38(11):13-22.

    CHEN Zongping, XU Dingyi, ZHENG Wei, et al. Experimental investigation on hysteretic behavior of welded stud steel reinforced concrete columns subjected to constant axial compression and cycled flexure-shear-torsion[J]. Journal of Building Structures,2017,38(11):13-22(in Chinese).
    [4] 唐锦蜀, 韩文涛, 张堃, 等. 偏心受拉型钢-混凝土组合梁的受力性能试验研究[J]. 工业建筑, 2015, 45(8):170-174.

    TANG Jinshu, HAN Wentao, ZHANG Kun, et al. Experimental study of mechanical behaviors of SRC beams under eccentric tension[J]. Industrial Construction,2015,45(8):170-174(in Chinese).
    [5] 傅剑平, 陈茜, 张川等. 工字型钢混凝土偏心受拉构件正截面承载力计算[J]. 建筑结构学报, 2017, 38(2):90-98.

    FU Jianping, CHEN Qian, ZHANG Chuan. Calculation for ultimate flexural capacity of eccentrically tensioned SRC members with embeded I-shaped steel[J]. Journal of Building Structures,2017,38(2):90-98(in Chinese).
    [6] YAO G F, XIONG X Y. Analytical model and evaluation of maximum crack width for unbonded PSRC frame beam under short-term service load[J]. The Structural Design of Tall and Special Buildings,2019,28(16):1-15.
    [7] 熊学玉, 姚刚峰. 单调与反复竖向荷载作用下无黏结预应力型钢混凝土框架受力性能试验研究[J]. 建筑结构学报, 2017, 38(12):1-11.

    XIONG Xueyu, YAO Gangfeng. Experimental study on behavior of unbounded prestressed steel-reinforced concrete frame under vertical monotonic and cyclic loading[J]. Journal of Building Structures,2017,38(12):1-11(in Chinese).
    [8] 高峰, 熊学玉, 张少红, 等. 竖向地震作用下PSRC框架梁延性性能及有限元分析[J]. 应用基础与工程科学学报, 2016, 24(3):595-607.

    GAO Feng, XIONG Xueyu, ZHANG Shaohong, et al. Behavior of ductility and finite element analysis on prestressed steel reinforced concrete frame beam under vertical seismic[J]. Journal of Basic Science and Engineering,2016,24(3):595-607(in Chinese).
    [9] SELVACHANDRAN P, ANANDAKUMAR S, MUTHURAMU K L. Modified frosch crack width model for concrete beams prestressed with CFRP bars[J]. Polymers and Polymer Composites,2016,24(7):587-596. doi: 10.1177/096739111602400719
    [10] SELVACHANDRAN P, ANANDAKUMAR S, MUTHURAMU K L. Deflection of steel reinforced concrete beam prestressed with CFRP bar[J]. Archives of Metallurgy & Materials, 2017, 62 (3): 1915-1922.
    [11] CAO Q, ZHOU J P, WU Z M, et al. Flexural behavior of prestressed CFRP reinforced concrete beams by two different tensioning methods[J]. Engineering Structures,2019,189:411-422.
    [12] 程东辉, 郑文忠. 无粘结CFRP筋部分预应力混凝土连续梁试验与分析[J]. 复合材料学报, 2008, 25(5):104-113. doi: 10.3321/j.issn:1000-3851.2008.05.018

    CHENG Donghui, ZHENG Wenzhong. Experiment and analysis on partial prestressed concrete continuous beams with unbonded CFRP tendon[J]. Acta Materiae Compositae Sinica,2008,25(5):104-113(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.018
    [13] 孙建渊, 李国平, 范立础. 后张预应力钢骨混凝土拉弯梁承载力试验研究[J]. 同济大学学报(自然科学版), 2006, 34(1):17-21. doi: 10.3321/j.issn:0253-374X.2006.01.004

    SUN Jianyuan, LI Guoping, FAN Lichu. Experimental study on the tension and moment capacities of the prestressed steel reinforced concrete beams[J]. Journal of Tongji University (Natural Science),2006,34(1):17-21(in Chinese). doi: 10.3321/j.issn:0253-374X.2006.01.004
    [14] 邓宇, 武晓彤, 张鹏. 预应力型钢混凝土柱偏心受拉性能试验研究[J]. 建筑结构学报, 2019, 40(5):115-123.

    DENG Yu, WU Xiaotong, ZHANG Peng. Experimental study on eccentric tensile properties of prestressed steel reinforced concrete columns[J]. Journal of Building Structures,2019,40(5):115-123(in Chinese).
    [15] 张鹏, 沈民合, 邓宇. SRC构件偏心受拉试验及承载力研究[J]. 沈阳建筑大学学报:自然科学版, 2019, 35(3):453-461.

    ZHANG Peng, SHEN Minhe, DENG Yu. Study on eccentric tension test and bearing capacity of SRC members[J]. Journal of Shenyang Jianzhu University:Natural Science Edition,2019,35(3):453-461(in Chinese).
    [16] 樊健生, 聂建国, 张彦玲. 钢-混凝土组合梁抗裂性能的试验研究[J]. 土木工程学报, 2011, 44(2):1-7.

    FAN Jiansheng, NIE Jianguo, ZHANG Yanling. Experimental study of crack resistance of steel-concrete composite beams[J]. China Civil Engineering Journal,2011,44(2):1-7(in Chinese).
    [17] 孟刚, 贾金青, 高军程, 等. 预应力钢骨超高强混凝土梁裂缝宽度试验与计算[J]. 华南理工大学学报(自然科学版), 2014, 42(10):102-109.

    MENG Gang, JIA Jinqing, GAO Juncheng, et al. Experiment and calculation of steel-reinforced ultra-high crack width of prestressed strength concrete beams[J]. Journal of South China University of Technology (Natural Science Edition),2014,42(10):102-109(in Chinese).
    [18] 谭园, 薛伟辰, 王晓辉. 有粘结预应力FRP筋混凝土梁抗裂计算方法[J]. 建筑结构, 2008, 26(3):117-120.

    TAN Yuan, XUE Weichen, WANG Xiaohui. Calculation methods for cracking moments and crack width of concrete beams prestressed with bonded FRP tendons[J]. Building Structure,2008,26(3):117-120(in Chinese).
    [19] 张鹏, 凌亚青, 邓宇, 等. CFRP-PCPs复合筋嵌入加固钢筋混凝土梁裂缝试验及计算方法研究[J]. 复合材料学报, 2013, 30(5):251-257. doi: 10.3969/j.issn.1000-3851.2013.05.037

    ZHANG Peng, LING Yaqing, DENG Yu, et al. Experiment and calculation on crack of reinforced concrete beams strengthened with near surface mounted CFRP-PCPs reinforcement[J]. Acta Materiae Compositae Sinica,2013,30(5):251-257(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.037
    [20] 邓宇, 武晓彤, 张鹏. 无黏结预应力型钢混凝土偏拉构件裂缝控制试验研究及计算方法[J]. 工业建筑, 2019, 49(8):185-189.

    DENG Yu, WU Xiaotong, ZHANG Peng. Experimental study and calculation for crack control of unbonded prestressed steel reinforced concrete members under eccentric tension[J]. Industrial Construction,2019,49(8):185-189(in Chinese).
    [21] 熊学玉, 高峰, 李亚明. 预应力型钢混凝土框架梁试验研究及抗裂度分析[J]. 工业建筑, 2011, 41(12):16-19.

    XIONG Xueyu, GAO Feng, LI Yaming. Experimental investigation and crack resistance analysis on large scale prestressed steel reinforced concrete frame[J]. Industrial Construction,2011,41(12):16-19(in Chinese).
    [22] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of composite structures: GB/T 50152—2012[S]. Beijing: China Architecture & uilding Press, 2012(in Chinese).
    [23] 中华人民共和国住房和城乡建设部. 组合结构设计规范: JGJ 138—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of composite structures: JGJ 138—2016[S]. Beijing: China Architecture & uilding Press, 2016(in Chinese).
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  926
  • HTML全文浏览量:  443
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 录用日期:  2020-06-28
  • 网络出版日期:  2020-07-10
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回