留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超浸润性可逆切换的超双疏复合海绵材料的制备及油水分离应用

何影格 陈媛媛 刘维仪 张延宗

何影格, 陈媛媛, 刘维仪, 等. 超浸润性可逆切换的超双疏复合海绵材料的制备及油水分离应用[J]. 复合材料学报, 2021, 38(3): 854-862. doi: 10.13801/j.cnki.fhclxb.20200709.001
引用本文: 何影格, 陈媛媛, 刘维仪, 等. 超浸润性可逆切换的超双疏复合海绵材料的制备及油水分离应用[J]. 复合材料学报, 2021, 38(3): 854-862. doi: 10.13801/j.cnki.fhclxb.20200709.001
HE Yingge, CHEN Yuanyuan, LIU Weiyi, et al. Preparation of superamphiphobic composite sponge material with super-wetting reversible switching and application in oil-water separation[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 854-862. doi: 10.13801/j.cnki.fhclxb.20200709.001
Citation: HE Yingge, CHEN Yuanyuan, LIU Weiyi, et al. Preparation of superamphiphobic composite sponge material with super-wetting reversible switching and application in oil-water separation[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 854-862. doi: 10.13801/j.cnki.fhclxb.20200709.001

超浸润性可逆切换的超双疏复合海绵材料的制备及油水分离应用

doi: 10.13801/j.cnki.fhclxb.20200709.001
基金项目: 四川省重大科技专项课题(2019YFS0520),四川省科技计划重点研发项目(2017SZ0039)
详细信息
    通讯作者:

    张延宗,博士,教授,博士生导师,研究方向为环境材料  E-mail:yzzhang@sicau.edu.cn

  • 中图分类号: TB332

Preparation of superamphiphobic composite sponge material with super-wetting reversible switching and application in oil-water separation

  • 摘要: 通过简单的溶胶-凝胶法制备了全氟癸基三甲氧基硅烷(PFDMS)-正癸酸(DA)-TiO2溶液,经浸泡后得到PFDMS-DA-TiO2超双疏海绵。PFDMS-DA-TiO2超双疏海绵在质量分数为25wt%~28wt%的氨气诱导下,表面浸润性由超双疏切换为超亲水-空气中超疏油。利用FTIR和SEM对改性前后PFDMS-DA-TiO2海绵表面进行表征,分析其化学组成和表面形貌,研究了DA的体积比对PFDMS-DA-TiO2超双疏海绵表面浸润性可逆切换效果的影响,并对其耐盐性、耐磨性及油水分离性能进行了测试。结果表明:DA的最佳体积比为5.8%,其油水分离效率与通量分别可达99.6%、4775 L/(m2·h)。PFDMS-DA-TiO2超双疏海绵经磨损实验及在质量分数为3.5wt%的NaCl溶液中浸泡12 h后,均保持优异的超双疏性能,表现出较高的耐磨性和耐盐性。经氨气诱导,其表面浸润性在超双疏与超亲水-空气中超疏油之间可逆切换20次后,两种润湿性能仍能各自保持稳定,可用于实际工业中高效可控地分离油水混合物。

     

  • 图  1  原始海绵和全氟癸基三甲氧基硅烷(PFDMS)-正癸酸(DA)-TiO2海绵的SEM图像

    Figure  1.  SEM images of original sponge and perfluorodecyltrimethoxysilane (PFDMS)-n-decanoic acid (DA)-TiO2 sponge

    图  2  PFDMS、PFDMS-DA-TiO2海绵表面粉末和钛酸丁酯的FTIR图谱

    Figure  2.  FTIR spectra of PFDMS, PFDMS-DA-TiO2 sponge surface powder and butyl titanate

    图  3  PFDMS-DA-TiO2海绵表面浸润性的可逆切换

    Figure  3.  Reversible switching of surface wettability of PFDMS-DA-TiO2 sponge

    图  4  氨气诱导前后PFDMS-DA-TiO2海绵表面粉末的FTIR

    Figure  4.  FTIR spectra of PFDMS-DA-TiO2 modified sponge surface powder before and after ammonia induction

    图  5  PFDMS-DA-TiO2海绵表面浸润性可逆切换次数

    Figure  5.  Surface wettability reversible switching times of PFDMS-DA-TiO2 sponge

    图  6  不同DA体积比的PFDMS-DA-TiO2海绵表面浸润性切换程度: (a)水的接触角、滚动角及疏水性能转变; (b)油的接触角和滚动角变化

    Figure  6.  Degree of PFDMS-DA-TiO2 sponge surface wettability switching at different volume ratios of DA: (a) Water contact angle, rolling angle and hydrophobic property conversion; (b) Oil contact angle and rolling angle change

    图  7  PFDMS-DA-TiO2海绵的性能: (a) 3.5wt% NaCl溶液浸泡时间对PFDMS-DA-TiO2海绵表面超双疏性能的影响; (b)不同磨损距离对PFDMS-DA-TiO2海绵表面超双疏性能的影响

    Figure  7.  Performance of PFDMS-DA-TiO2 sponge: (a) Effect of immersion time of 3.5wt% NaCl solution on superamphiphobic performance of PFDMS-DA-TiO2 sponge surface; (b) Effect of different wear distances on superamphiphobic performance of PFDMS-DA-TiO2 sponge surface

    图  8  柴油-水分离过程

    Figure  8.  Separation process of diesel-water

    图  9  油的净化: (a)~(c)柴油的净化; (d)~(f)三氯甲烷的净化

    Figure  9.  Purification of oil: (a)–(c) Purification of diesel oil; (d)–(f) Purification of chlorofor

  • [1] XU Q, XU H, CHEN J R, et al. Graphene and grapheme oxide: Advanced membranes for gas separation and water purification[J]. Inorganic Chemistry Frontiers,2015,46(30):417-424.
    [2] GAO J F, XIN S, HUANG X W, et al. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation[J]. Applied Surface Science,2018,439:394-404. doi: 10.1016/j.apsusc.2018.01.013
    [3] 张锦山, 董季玲, 武伟, 等. 特殊浸润性油水分离材料研究进展[J]. 功能材料, 2019, 12(50):12041-12050.

    ZHANG J S, DONG J L, WU W, et al. Research progress on special infiltrating oil-water separation materials[J]. Journal of Function Material,2019,12(50):12041-12050(in Chinese).
    [4] WANG B, LIANG W X, GUO Z G, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature[J]. Chemical Society Reviews,2015,44(1):336-361. doi: 10.1039/C4CS00220B
    [5] DAI Y H, CHEN D Y, LI N J, et al. Self-healing and superwettablenanofibrous membranes for efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A,2019,54(4):3648-3660.
    [6] WU C, HUANG X Y, WU X F, et al. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators[J]. Advanced Materials,2013,25(39):5658-5662. doi: 10.1002/adma.201302406
    [7] MIRSHAHGHASSEMI S, LEAD J R. Oil recovery from water under environmentally relevant conditions using magnetic nanoparticles[J]. Environmental Science & Technology,2015,49(19):729-736.
    [8] 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18):56-78.

    WANG P W, LIU M J, JIANG L. Bioinspiredmultiscale interfacial materials with superwettability[J]. Acta Physica Sinica,2016,65(18):56-78(in Chinese).
    [9] KRISHNAN S, WANG N, OBER C K, et al. Comparison of the fouling release properties of hydrophobic fluorinated hydrophilic PEGylated block copolymer surfaces: Attachment strength of the diatom navicula and the green alga ulva[J]. Biomacromolecules,2006,7(5):1449-1462. doi: 10.1021/bm0509826
    [10] 李文涛, 雍佳乐, 杨青, 等. 基于特殊浸润性材料的油水分离[J]. 物理化学学报, 2018, 34(5):456-475. doi: 10.3866/PKU.WHXB201709211

    LI W T, YONG J L, YANG Q, et al. Oil-water separation based on the materials with special wettability[J]. Acta Physico-Chimica Sinica,2018,34(5):456-475(in Chinese). doi: 10.3866/PKU.WHXB201709211
    [11] XUE Z X, DAO Y Z, LIU N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A,2014,2(8):2445-2460. doi: 10.1039/C3TA13397D
    [12] 屈孟男, 马利利, 何金梅, 等. 特异润湿型油水分离材料的研究进展[J]. 材料导报, 2017, 31(10):152-161.

    QU M N, MA L L, HE J M, et al. Research progress of specific wetting oil-water separation materials[J]. Materials Review,2017,31(10):152-161(in Chinese).
    [13] YANG J, ZHANG Z Z, XU X H, et al. Superhydrophilic-superoleophobic coatings[J]. Journal of Materials Chemistry,2012,22(7):2834-2837.
    [14] 杨明全. 超亲油材料在油水分离中的应用研究[D]. 大庆: 东北石油大学, 2017.

    YANG M Q. Research on the application of superoleophilic materials for oil/water separation[D]. Daqing: Northeast Petroleum University, 2017(in Chinese).
    [15] 曾新娟, 王丽, 皮丕辉, 等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1):73-86. doi: 10.7536/PC170828

    ZENG X J, WANG L, PI P H, et al. Development and research of special wettable oil-water separation materials[J]. Progress in Chemistry,2018,30(1):73-86(in Chinese). doi: 10.7536/PC170828
    [16] PAN Q M, WANG M, WANG H B. Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes[J]. Applied Surface Science,2008,254:6002-6006. doi: 10.1016/j.apsusc.2008.03.034
    [17] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry,1936,28(8):988-994.
    [18] DASSIE A, BOXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1994,40(40):546-551.
    [19] 李芝华, 沈玉婷. 一种氟硅烷改性聚丁二烯型聚氨酯水声透声材料及其制备方法: 中国, 109912966[P]. 2019-06-21.

    LI Z H, SHEN Y T. The invention relates to a fluorosilane modified polybutadiene type polyurethane underwater acoustic translucent material and a preparation method thereof: China, 109912966[P]. 2019-06-21(in Chinese)
    [20] 徐林, 任煜, 张红阳, 等. 碱减量-氟硅烷处理涤纶织物的拒水拒油性[J]. 印染, 2017, 43(18):1-4.

    XU L, REN Y, ZHANG H Y, er al. Water and oil-repellency of polyester fabrics after alkali deweighting-fluoroalkylsilanes treatment[J]. Dyeing and Finishing,2017,43(18):1-4(in Chinese).
    [21] ZHOU H M, CHEN R R, LIU Q, et al. Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy[J]. Chemical Engineering Journal,2019,368:261-272. doi: 10.1016/j.cej.2019.02.032
    [22] 李云涛, 晏华, 汪宏涛, 等. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征[J]. 材料导报, 2017, 31(2):94-99.

    LI Y T, YAN H, WANG H T, et al. Preparation and characterization of decanoic acid-lauric acid-stearic acid temary eutectic mixture/expanded graphene composite phase change material with a low eutectic temperature[J]. Materials Review,2017,31(2):94-99(in Chinese).
    [23] YOU Y, ZHANG S Y, WAN L, et al. Preparation of continuous TiO2 fibers by sol-gel method and its photocatalytic degradation on formaldehyde[J]. Applied Surface Science,2012,258(8):3469-3474. doi: 10.1016/j.apsusc.2011.11.099
    [24] YANG J, LI D, WANG X, et al. Rapid synthesis of nanocrystalline TiO2/SnO2 binary oxides and their photoinduced decomposition of methyl orange[J]. Journal of Solid State Chemistry,2002,165(1):193-198. doi: 10.1006/jssc.2001.9526
    [25] 胡佩卓, 刘莲, 王海静, 等. 磷钼酸铵/聚丙烯酸复合凝胶吸附剂的合成及对铯的分离[J]. 核化学与放射化学, 2019, 41(4):362-369.

    HU P Z, LIU L, WANG H J, et al. Synthesis of ammonium phosphomolybdate/polyacrylic acid composite gel adsorbent and separation of cesium[J]. Journal of Nuclear and Radiochemistry,2019,41(4):362-369(in Chinese).
    [26] 王春会, 李树材. 纳米TiO2/阴离子水性聚氨酯粘合剂的研究[J]. 中国粘合剂, 2006, 15(3):1-3.

    WANG C H, LI S C. Study on nano-TiO2/anionic aqueous polyurethane adhesive[J]. China Adhesives,2006,15(3):1-3(in Chinese).
    [27] 刘婉颖, 邱宇洪, 刘颖, 等. 纳米TiO2对D16T铝合金微弧氧化膜耐磨性的影响及机理[J]. 表面技术, 2019, 28(10):180-189.

    LIU W Y, QIU Y H, LIU Y, et al. Effect and mechanism of nano-TiO2 on wear resistance of micro-arc oxidation film on D16T aluminium alloy[J]. Surface Technology,2019,28(10):180-189(in Chinese).
    [28] LIU S H, HAN G, SHU M H, et al. Monodispersed inorganic/organic hybrid spherical colloids: Versatile synthesis and their gas-triggered reversibly switchable wettability[J]. Journal of Materials Chemical,2010,20(44):10001-10009. doi: 10.1039/c0jm02101f
    [29] XU Z G, ZHAO Y, WANG H X, et al. A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation[J]. Angewandte Chemie International Edition,2015,54(15):4527-4530.
    [30] LI F R, WANG Z R, HUANG S C, et al. Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil-water separation[J]. Advanced Funcational Materials,2018,28(20):1706867. doi: 10.1002/adfm.201706867
  • 加载中
图(9)
计量
  • 文章访问数:  981
  • HTML全文浏览量:  472
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 录用日期:  2020-06-24
  • 网络出版日期:  2020-07-09
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回