留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可循环利用BiOBr/石墨烯水凝胶复合材料的制备及其对丁基钠黄药的降解性能

常亮亮 于艳 曹宝月 乔成芳

常亮亮, 于艳, 曹宝月, 等. 可循环利用BiOBr/石墨烯水凝胶复合材料的制备及其对丁基钠黄药的降解性能[J]. 复合材料学报, 2021, 38(3): 832-842. doi: 10.13801/j.cnki.fhclxb.20200703.002
引用本文: 常亮亮, 于艳, 曹宝月, 等. 可循环利用BiOBr/石墨烯水凝胶复合材料的制备及其对丁基钠黄药的降解性能[J]. 复合材料学报, 2021, 38(3): 832-842. doi: 10.13801/j.cnki.fhclxb.20200703.002
CHANG Liangliang, YU Yan, CAO Baoyue, et al. Preparation of recyclable BiOBr/graphene hydrogel composite and its photodegradation of sodium butyl xanthate[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 832-842. doi: 10.13801/j.cnki.fhclxb.20200703.002
Citation: CHANG Liangliang, YU Yan, CAO Baoyue, et al. Preparation of recyclable BiOBr/graphene hydrogel composite and its photodegradation of sodium butyl xanthate[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 832-842. doi: 10.13801/j.cnki.fhclxb.20200703.002

可循环利用BiOBr/石墨烯水凝胶复合材料的制备及其对丁基钠黄药的降解性能

doi: 10.13801/j.cnki.fhclxb.20200703.002
基金项目: 陕西省教育厅自然科学基金(17JS034;17JS035);商洛市科学技术研究发展计划项目(SK2018-20);商洛学院自然科学基金(18SKY015)
详细信息
    通讯作者:

    乔成芳,博士,副教授,研究方向为功能材料及其热力学 E-mail:409095139@qq.com

  • 中图分类号: TB332

Preparation of recyclable BiOBr/graphene hydrogel composite and its photodegradation of sodium butyl xanthate

  • 摘要: 本文利用水热法合成BiOBr/石墨烯(BiOBr/RGO)水凝胶复合材料,采用XRD、SEM等手段表征复合材料的组成、形貌特征,并探究了BiOBr/RGO水凝胶复合材料对正丁基钠黄药的降解性能。结果表明,成功制备出有利于回收利用的三维宏观BiOBr/RGO水凝胶复合材料;50 mL浓度为25 mg/L的正丁基钠黄药溶液,降解时间为85 min时,10 mg BiOBr/RGO水凝胶复合材料(BiOBr质量分数为92wt%)对黄药的降解率可达96.69%,而纯BiOBr降解率仅为44.84%。总之,RGO的引入可以提升BiOBr的光催化性能,且宏观材料有利于回收再利用。

     

  • 图  1  BiOBr/石墨烯(BiOBr/RGO)水凝胶材料制备流程

    Figure  1.  Schematic synthesis of BiOBr/graphene (BiOBr/RGO) hydrogel composite

    CTAB—Cetyl trimethyl ammonium bromide; EG—Ethylene glycol; GO—Graphene oxide

    图  2  氧化石墨烯(GO) (a)、RGO和BiOBr/RGO水凝胶复合材料(b)的XRD图谱

    Figure  2.  XRD patterns of graphene oxide (GO) (a), RGO and BiOBr/RGO hydrogel composites (b)

    图  3  BiOBr、RGO和BiOBr/RGO水凝胶复合材料的FESEM图像

    Figure  3.  FESEM images of BiOBr, RGO and BiOBr/RGO hydrogel composite

    图  4  RGO和BiOBr/RGO水凝胶复合材料的XPS图谱

    Figure  4.  XPS spectra of RGO and BiOBr/RGO hydrogel composite

    图  5  BiOBr和BiOBr/RGO水凝胶复合材料的N2吸附-脱附热力学曲线(a)及孔径分布曲线(b)

    Figure  5.  N2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of BiOBr and BiOBr/RGO hydrogel composite

    图  6  BiOBr和BiOBr/RGO水凝胶复合材料的紫外-可见光漫反射图谱

    Figure  6.  UV-vis diffuse reflectance spectra of BiOBr and BiOBr/RGO hydrogel composite

    图  7  BiOBr和BiOBr/RGO水凝胶复合材料在300 W氙灯下的光电流瞬态响应(a)和电化学阻抗图谱(b)

    Figure  7.  Transient photocurrent responses under 300 W xenon lamp (a) and electrochemical impedance spectra (b) of BiOBr and BiOBr/RGO hydrogel composite

    图  8  BiOBr和BiOBr/RGO水凝胶复合材料对正丁基钠黄药(SBX)的吸附性能对比(SBX溶液体积为50 mL,10 mg样品)

    Figure  8.  Comparison of adsorption properties of BiOBr and BiOBr/RGO hydrogel composites for sodium n-butyl xanthate (SBX) (Volume of SBX is 50 mL, the dosages of all samples is 10 mg

    C0—Initial concentration of SBX solution (25 mg/L)

    图  9  BiOBr和BiOBr/RGO水凝胶复合材料在300 W氙灯下对SBX光降解性能(a)及光降解动力学(b)(C0为 25 mg/L,SBX体积为50 mL,10 mg样品)

    Figure  9.  Photocatalytic activities under 300 W xenon lamp (a) and kinetic curves of photocatalytic degradation (b) for SBX of BiOBr and BiOBr/RGO hydrogel composites (C0 is 25 mg/L, volume of SBX is 50 mL, the dosage of all samples is 10 mg)

    k—First-order kinetics constant

    图  10  BiOBr/RGO水凝胶复合材料在循环使用前和后的FTIR图谱

    Figure  10.  FTIR spectra of BiOBr/RGO hydrogel composite before use and after recycled

    图  11  BiOBr/RGO水凝胶复合材料过滤后循环使用的残余率(a)及在300 W氙灯下的循环利用性能(b)

    Figure  11.  Remaining rate by cycle runs after filtration (a) and recyclability under 300 W xenon lamp (b) of BiOBr/RGO hydrogel composite

    图  12  在300 W氙灯下不同捕获剂对BiOBr/RGO水凝胶复合材料光催化性能的影响(C0为 25 mg/L,SBX体积为50 mL,10 mg样品)

    Figure  12.  Effect of photodegradation on BiOBr/RGO hydrogel composite in presence of different scavengers under 300 W xenon lamp irradiation (C0 is 25 mg/L, volume of SBX is 50 mL, the dosage of all samples is 10 mg)

    EDTA-2Na—Ethylenediaminetetraacetic acid disodium salt

    图  13  BiOBr/RGO水凝胶复合材料的光降解机制

    Figure  13.  Photodegradation mechanism diagram of BiOBr/RGO hydrogel composite

    VB—Valence band; CB—Conduction band

    表  1  BiOBr/RGO水凝胶复合材料的名称及含量

    Table  1.   Name and content of BiOBr/RGO hydrogel composites

    Composite nameMass fraction of BiOBr/wt%Mass fraction of RGO/wt%
    98wt%BiOBr/RGO982
    95wt%BiOBr/RGO955
    92wt%BiOBr/RGO928
    90wt%BiOBr/RGO9010
    下载: 导出CSV
  • [1] AMROLLAHI A, MASSINAEI M, MOGHADDAM A Z. Removal of the residual xanthate from flotation plant tailings using bentonite modified by magnetic nano-particles[J]. Minerals Engineering,2019,134:142-155. doi: 10.1016/j.mineng.2019.01.031
    [2] KIANINIA Y, KHALESI M R, SEYEDHAKIMI A, et al. Flotation of mercury from the tailings of the Agh-Darreh gold processing plant, Iran[J]. Journal of the Southern African Institute of Mining & Metallurgy,2017,117(1):83-88.
    [3] BOUJEMAA D, YASSINE T, RACHID H, et al. Recovery of residual silver-bearing minerals from low-grade tailings by froth flotation: The case of zgounder mine, morocco[J]. Minerals,2018,8(7):273. doi: 10.3390/min8070273
    [4] GRANO S R, JOHNSON N W, RALSTON J. Control of the solution interaction of metabisulphite and ethyl xanthate in the flotation of the Hilton ore of Mount Isa Mines Limited, Australia[J]. Minerals Engineering,1997,10(1):17-39. doi: 10.1016/S0892-6875(96)00129-X
    [5] HIDALGO P, GUTZ I G R. Determination of low concentrations of the flotation reagent ethyl xanthate by sampled DC polarography and flow injection with amperometric detection[J]. Talanta,2001,54(2):403-409. doi: 10.1016/S0039-9140(01)00311-3
    [6] VEZIROGLU S, OBERMANN A L, ULLRICH M, et al. Photodeposition of Au nanoclusters for enhanced photocatalytic dye degradation over TiO2 thin film[J]. ACS Applied Materials & Interfaces,2020,12(13):14983-14992.
    [7] BHATKHANDE D S, PANGARKAR V G, BEENACKERS A A C M. Photocatalytic degradation for environmental applications: A review[J]. Journal of Chemical Technology & Biotechnology,2002,77(1):102-116.
    [8] TURCHI C S, OLLIS D F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack[J]. Journal of Catalysis,1990,122(1):178-192. doi: 10.1016/0021-9517(90)90269-P
    [9] LIU Z Y, MIAO Y E, LIU M k, et al. Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance[J]. Journal of Colloid and Interface Science,2014,424:49-55. doi: 10.1016/j.jcis.2014.03.009
    [10] 李健, 闫龙, 潘盼盼, 等. 活性炭负载ZnS/TiO2光催化剂的制备及其性能研究[J]. 非金属矿, 2019, 42(2):76-79. doi: 10.3969/j.issn.1000-8098.2019.02.021

    LI J, YAN L, PAN P P, et al. Preparation and properties of ZnS/TiO2 photocatalyst supported by activated carbon[J]. Non-Metallic Mines,2019,42(2):76-79(in Chinese). doi: 10.3969/j.issn.1000-8098.2019.02.021
    [11] 周琪, 钟永辉, 陈星, 等. 石墨烯/纳米TiO2复合材料的制备及其光催化性能[J]. 复合材料学报, 2014, 31(2):255-262.

    ZHOU Q, ZHONG Y H, CHEN X, et al. Preparation of reduced graphene oxide/nano TiO2 composites by two-step hydrothermal method and their photocatalytic properties[J]. Acta Materiae Compositae Sinica,2014,31(2):255-262(in Chinese).
    [12] 陈苗, 敖卫, 王如意, 等. 氮掺杂TiO2中空复合微球的制备及可见光光催化性能[J]. 复合材料学报, 2015, 32(3):918-923.

    CHEN M, AO W, WANG R Y, et al. Preparation and visible-light photocatalytic property of nitrogen-doped TiO2 hollow composite microspheres[J]. Acta Materiae Compositae Sinica,2015,32(3):918-923(in Chinese).
    [13] HIROMI Y, MASARU H, JUNKO M, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2[J]. Catalysis Today,2003,84(3):191-196.
    [14] QU X, LIU M, LI L, et al. BiOBr flakes decoration and structural modification for CdTe/TiO2 spheres: Towards water decontamination under simulated light irradiation[J]. Materials Science in Semiconductor Processing,2019,93:331-338. doi: 10.1016/j.mssp.2019.01.006
    [15] JIANG G, LI X, WEI Z, et al. Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation[J]. Powder Technology,2014,260:84-89. doi: 10.1016/j.powtec.2014.04.005
    [16] TIAN H, LI J, GE M, et al. Removal of bisphenol A by mesoporous BiOBr under simulated solar light irradiation[J]. Catalysis Science & Technology,2012,2(11):23-51.
    [17] FU J, TIAN Y, CHANG B, et al. BiOBr-carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry,2012,22(39):21159-21166. doi: 10.1039/c2jm34778d
    [18] DENG W, PAN F, BATCHELOR B, et al. Mesoporous TiO2-BiOBr microspheres with tailorable adsorption capacities for photodegradation of organic water pollutants: Probing adsorption-photocatalysis synergy by combining experiments and kinetic modeling[J]. Environmental Science: Water Research & Technology,2019,5(4):769-781.
    [19] ZHANG L, WANG W, SUN S, et al. Elimination of BPA endocrine disruptor by magnetic BiOBr@SiO2@Fe3O4 photocatalyst[J]. Applied Catalysis B: Environmental,2014,148-149:164-169. doi: 10.1016/j.apcatb.2013.10.053
    [20] SONG X C, ZHENG Y F, YIN H Y, et al. The solvothermal synthesis and enhanced photocatalytic activity of Zn2+ doped BiOBr hierarchical nanostructures[J]. New Journal of Chemistry,2016,40(1):130-135. doi: 10.1039/C5NJ01282A
    [21] LIU W, CAI J, LI Z. Self-assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis[J]. ACS Sustainable Chemistry & Engineering,2015,3(2):277-282.
    [22] HE Y R, LI S C, LI X L, et al. Graphene (rGO) hydrogel: A promising material for facile removal of uranium from aqueous solution[J]. Chemical Engineering Journal,2018,338:333-340. doi: 10.1016/j.cej.2018.01.037
    [23] PRASITTHIKUN T, WU X, SATO T, et al. Synthesis and photocatalytic activity of visible-light responsive BiOBr/GO composites[J]. Key Engineering Materials,2017,751:807-812. doi: 10.4028/www.scientific.net/KEM.751.807
    [24] 杨旭宇, 王贤保, 李静, 等. 氧化石墨烯的可控还原及结构表征[J]. 高等学校化学学报, 2012, 33(9):1902-1907. doi: 10.3969/j.issn.0251-0790.2012.09.005

    YANG X Y, WANG X B, LI J, et al. Controllable reduction and structural characterizations of graphene oxides[J]. Chemical Journal of Chinese Universities Chinese,2012,33(9):1902-1907(in Chinese). doi: 10.3969/j.issn.0251-0790.2012.09.005
    [25] CHEN Y, GE H, WEI L, et al. Reduction degree of reduced graphene oxide (RGO) dependence of photocatalytic hydrogen evolution performance over RGO/ZnIn2S4 nanocomposites[J]. Catalysis Science & Technology,2013,3(7):1712-1717.
    [26] LI X, WANG L, ZHANG L, et al. A facile route to the synthesis of magnetically separable BiOBr/NiFe2O4 composites with enhanced photocatalytic performance[J]. Applied Surface Science,2017,419(15):586-594.
    [27] 盘雨凝, 帅欢, 李男, 等. 纳米TiO2/硅藻土复合材料制备及亚甲基蓝降解[J]. 非金属矿, 2019, 42(5):98-100.

    PAN Y N, SHUAI H, LI N, et al. Study on preparation of TiO2/diatomite composite materials and its photocatalytic of methylene blue[J]. Non-Metallic Mines,2019,42(5):98-100(in Chinese).
    [28] CHEN F, AN W, LIU L, et al. Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy[J]. Applied Catalysis B: Environmental,2017,217:65-80. doi: 10.1016/j.apcatb.2017.05.078
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1492
  • HTML全文浏览量:  524
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 录用日期:  2020-06-22
  • 网络出版日期:  2020-07-06
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回