留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑拉伸刚化效应的FRP筋/混凝土轴拉构件变形计算方法

范兴朗 黄俊超 吴熙 周欣竹

范兴朗, 黄俊超, 吴熙, 等. 考虑拉伸刚化效应的FRP筋/混凝土轴拉构件变形计算方法[J]. 复合材料学报, 2021, 38(3): 932-943. doi: 10.13801/j.cnki.fhclxb.20200623.003
引用本文: 范兴朗, 黄俊超, 吴熙, 等. 考虑拉伸刚化效应的FRP筋/混凝土轴拉构件变形计算方法[J]. 复合材料学报, 2021, 38(3): 932-943. doi: 10.13801/j.cnki.fhclxb.20200623.003
FAN Xinglang, HUANG Junchao, WU Xi, et al. Deformation analysis method of FRP bar/concrete tension members by considering tension stiffening effect[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 932-943. doi: 10.13801/j.cnki.fhclxb.20200623.003
Citation: FAN Xinglang, HUANG Junchao, WU Xi, et al. Deformation analysis method of FRP bar/concrete tension members by considering tension stiffening effect[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 932-943. doi: 10.13801/j.cnki.fhclxb.20200623.003

考虑拉伸刚化效应的FRP筋/混凝土轴拉构件变形计算方法

doi: 10.13801/j.cnki.fhclxb.20200623.003
基金项目: 国家自然科学基金青年项目(51708495);浙江省自然科学基金面上项目(LY20E080027;LY20E080006);杭州市农业与社会发展科研自主申报项目(20191203B42)
详细信息
    通讯作者:

    范兴朗,博士,讲师,研究方向为混凝土结构基本理论 E-mail:xlfan1983@126.com

  • 中图分类号: TB332

Deformation analysis method of FRP bar/concrete tension members by considering tension stiffening effect

  • 摘要: 考虑拉伸刚化效应是精确计算纤维增强树脂复合材料(FRP)筋/混凝土构件变形和裂缝的基础。提出了考虑拉伸刚化效应的FRP筋/混凝土拉伸构件变形计算的解析方法。首先,对修正Eligehausen黏结滑移模型(修正BPE模型)进行简化提出四线性黏结-滑移模型。根据该模型推导了拉伸构件在不同拉伸荷载阶段的FRP筋、混凝土应力和变形及黏结力和滑移量的分布表达式。结合混凝土开裂判别方法,提出了FRP筋/混凝土拉伸构件的全过程变形计算方法。通过与已有文献试验结果对比验证了本文方法的准确性。对影响拉伸刚化的一些参数进行了敏感性分析。结果表明,混凝土强度和配筋率对拉伸刚化效应影响不大,FRP筋弹性模量是影响拉伸刚化效应的主要因素。

     

  • 图  1  BPE模型

    Figure  1.  BPE model

    图  2  BPE改进模型

    Figure  2.  Modified BPE model

    图  3  Harajli模型

    Figure  3.  Harajli’s model

    图  4  四线性黏结-滑移模型

    Figure  4.  Quadrilinear bond-slip model

    图  5  纤维增强树脂复合材料(FRP)筋/混凝土单轴拉伸构件分离体内力学关系

    Figure  5.  Internal forces for uniaxial loading of fiber reinforced polymer (FRP) bars/concrete tensile specimen ((a) Uniaxial tensile member; (b) Free body of tensile member; (c) Internal stress resultant in concrete; (d) Internal stress resultant in FRP bar)

    图  6  FRP筋/混凝土弹性阶段黏结应力分布

    Figure  6.  Distribution of bond stress of FRP bars/concrete at elastic stage

    图  7  FRP筋/混凝土硬化阶段黏结应力分布

    Figure  7.  Distribution of bond stress of FRP bars/concrete at hardening stage

    图  8  FRP筋/混凝土软化阶段黏结应力分布

    Figure  8.  Distribution of bond stress of FRP bars/concrete at softening stage

    图  9  FRP筋/混凝土摩擦阶段黏结应力分布

    Figure  9.  Distribution of bond stress of FRP bars/concrete at frictional stage

    图  10  FRP筋/混凝土轴拉构件开裂过程

    Figure  10.  Cracking process of a FRP bars/concrete tensile specimen

    图  11  FRP筋/混凝土平均应力-平均应变计算值与试验值比较

    Figure  11.  Comparison of calculated and experimental average stress-average strain curves of FRP/concrete

    图  12  混凝土强度对FRP筋/混凝土拉伸刚化的影响

    Figure  12.  Effect of concrete strength on tensile stiffening of FRP bars/concrete

    图  13  配筋率对FRP筋/混凝土拉伸刚化的影响

    Figure  13.  Effect of reinforcement ratio on tension stiffening of FRP bars/concrete

    图  14  FRP筋弹性模量对FRP筋/混凝土拉伸刚化的影响

    Figure  14.  Effect of elastic modulus of FRP bars on tension stiffening of FRP bars reinforced concrete

    表  1  FRP筋/混凝土轴拉试件几何及材料参数

    Table  1.   Geometric and material parameters of FRP bars/concrete axial tensile specimens

    ReferenceSpecimen2L/mmb/mmh/mmd/mm${f'_{\rm{c}}}$/MPa${f_{\rm{t}}}$/MPa${E_{\rm{c}}}$/GPa${f_{{\rm{fu}}}}$/MPa${E_{\rm{p}}}$/GPa${\delta _1}$/mm${\delta _{\rm{f}}}$/mm
    [12] 13-170 1200 170 170 13.7 48.1 1.8 27.4 770 37.6 0.29 2.83
    16-170 1200 170 170 16.9 46.6 2.6 34.6 1030 41.7 0.29 2.83
    19-170 1200 170 170 19.1 56.2 2.1 33.3 637 40.8 0.29 2.83
    [21] C30-12A-100(1) 1000 100 100 13.0 37.7 2.8 34.8 983 50.3 0.29 2.83
    C85-16C-100(1) 1000 100 100 20.0 116.4 4.1 54.1 1236 63.8 1.50 10.00
    [22] C50/13/100 1500 100 100 12.7 52.0 2.9 36.2 792 42.9 1.50 10.00
    C50/19/150 1300 150 150 19.1 52.0 2.9 36.2 715 41.9 1.50 10.00
    C90/19/150 1300 200 200 19.1 91.0 5.2 48.3 715 41.9 1.50 10.00
    Notes:2L—Effective length of specimens; b, h—Width and height of cross sections, respectively; d—Perimeter of FRP bars; ${f'_{\rm{c}}}$—Compressive strength of concrete; ${f_{\rm{t}}}$—Tensile strength of concrete; ${E_{\rm{c}}}$, ${E_{\rm{p}}}$—Elastic modulus of concrete and FRP bars, respectively; ${f_{\rm{fu}}}$—Ultimate tensile strength of FRP bars; ${\delta _1}$, ${\delta _{\rm{f}}}$—Maximum slip in hardening stage and softening stage, respectively.
    下载: 导出CSV

    表  2  BPE模型黏结-滑移参数

    Table  2.   Bond-slip parameters for BPE model

    ParameterRough surface and medium strength concreteSmooth surface and medium strength concreteRough surface and low strength concreteRough surface and high strength concrete
    α 0.25 0.16 0.39 0.12
    ${ {\delta } }_{ {{1} } }$/mm 0.29 0.42 0.61 0.24
    ${ {\delta } }_{ {{2} } }/$mm 0.76 2.54 1.18 0.37
    ${ {\delta } }_{ {{3} } }$/mm 2.83 4.23 3.74 3.79
    ${ {\tau } }_{ {{\rm{max}}} }$/MPa 0.93 0.50 0.78 3.13
    Notes: $\alpha $—A constant which controls initial nonlinear curvature; ${\delta _1}$, ${\delta _2}$, ${\delta _3}$— Maximum slip at nonlinear ascent stage, constant maximum bond stress stage and linear descent stage, respectively; ${\tau _{\max }}$— Maximum bond stress.
    下载: 导出CSV
  • [1] BENMOKRANE B, EL-SALAKAWY E, EL-RAGABY A, et al. Designing and testing of concrete bridge decks reinforced with glass FRP bars[J]. Journal of Bridge Engineering,2006,11(2):217-229. doi: 10.1061/(ASCE)1084-0702(2006)11:2(217)
    [2] GANGARAO H V, TALY N, VIJAY P V. Reinforced concrete design with FRP composites[M]. Florida: CRC Press, 2006.
    [3] TORRES L, LÓPEZ-ALMANSA F, BOZZO L M. Tension-stiffening model for cracked flexural concrete members[J]. Journal of Structural Engineering,2004,130(8):1242-1251. doi: 10.1061/(ASCE)0733-9445(2004)130:8(1242)
    [4] DAI J G, UEDA T, SATO Y, et al. Modeling of tension stiffening behavior in FRP-strengthened RC members based on rigid body spring networks[J]. Computer-Aided Civil and Infrastructure Engineering,2012,27(6):406-418. doi: 10.1111/j.1467-8667.2011.00741.x
    [5] STRAMANDINOLI R S B, LA ROVERE H L. An efficient tension-stiffening model for nonlinear analysis of reinforced concrete members[J]. Engineering Structures,2008,30(7):2069-2080. doi: 10.1016/j.engstruct.2007.12.022
    [6] BISCHOFF P H, GROSS S, OSPINA C E. The story behind proposed changes to ACI 440 deflection requirements for FRP-reinforced concrete[CD]. New York: Curran Associates, Inc., 2010.
    [7] NARAYANAN R S, BEEBY A W. Designers’ guide to EN 1992-1-1 and EN 1992-1-2. Eurocode 2: Design of concrete structures: General rules and rules for buildings and structural fire design[M]. Thomas Telford, 2005.
    [8] BISCHOFF P H, PAIXAO R. Tension stiffening and cracking of concrete reinforced with glass fiber reinforced polymer (GFRP) bars[J]. Canadian Journal of Civil Engineering,2004,31(4):579-588. doi: 10.1139/l04-025
    [9] BAENA M, TORRES L, TURON A, et al. Analysis of cracking behavior and tension stiffening in FRP reinforced concrete tensile elements[J]. Composites Part B: Engineering,2013,45(1):1360-1367. doi: 10.1016/j.compositesb.2012.07.026
    [10] MIGLIETTA P C, GRASSELLI G, BENTZ E C. Finite/discrete element model of tension stiffening in GFRP reinforced concrete[J]. Engineering Structures,2016,111:494-504. doi: 10.1016/j.engstruct.2015.12.037
    [11] GHIASSI B, SOLTANI M, RAHNAMAYE S S. Micromechanical modeling of tension stiffening in FRP-strengthened concrete elements[J]. Journal of Composite Materials,2018,52(19):2577-2596. doi: 10.1177/0021998317751248
    [12] BAENA M, TURON A, TORRE L, et al. Experimental study and code predictions of fibre reinforced polymer reinforced concrete (FRP RC) tensile members[J]. Composite Structures,2011,93(10):2511-2520. doi: 10.1016/j.compstruct.2011.04.012
    [13] VILANOVA I, TORRES L, BAENA M, et al. Experimental study of tension stiffening in GFRP RC tensile members under sustained load[J]. Engineering Structures,2014,79:390-400. doi: 10.1016/j.engstruct.2014.08.037
    [14] LIN X S, ZHANG Y X. Evaluation of bond stress-slip models for FRP reinforcing bars in concrete[J]. Composite Structures,2014,104:131-141.
    [15] ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations: Experimental results and analytical model[R]. Berkeley: Earthquake Engineering Research Center, 1983.
    [16] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [17] HARAJLI M H, HOUT M, JALKH W. Local bond stress-slip behavior of reinforcing bars embedded in plain and fiber concrete[J]. ACI Materials Journal,1995,92(4):343-354.
    [18] HARAJLI M, HAMAD B, KARAM K. Bond-slip response of reinforcing bars embedded in plain and fiber concrete[J]. Journal of Materials in Civil Engineering,2002,14(6):503-511. doi: 10.1061/(ASCE)0899-1561(2002)14:6(503)
    [19] HARAJLI M H. Bond stress-slip model for steel bars in unconfined or steel, FRC, or FRP confined concrete under cyclic loading[J]. Journal of Structural Engineering,2009,135(5):509-518. doi: 10.1061/(ASCE)0733-9445(2009)135:5(509)
    [20] GUPTA A K, MAESTRINI S R. Tension-stiffness model for reinforced concrete bars[J]. Journal of Structural Engineering,1990,116(3):769-790. doi: 10.1061/(ASCE)0733-9445(1990)116:3(769)
    [21] SOORIYAARACHCHI H, PILAKOUTAS K, BYARS E. Tension stiffening behavior of GFRP-reinforced concrete[C]//Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures. Kansas City: American Concrete Institute, 2005: 975-990.
    [22] KHARAL Z. Tension stiffening and cracking behavior of GFRP reinforced concrete[D]. Toronto: University of Toronto, 2014.
    [23] ROSSETTI V A, GALEOTA D, GIAMMATTEO M M. Local bond stress-slip relationships of glass fiber reinforced plastic bars embedded in concrete[J]. Materials and Structures,1995,28:340-344. doi: 10.1007/BF02473149
    [24] BISCHOFF P H. Effects of shrinkage on tension stiffening and cracking in reinforced concrete[J]. Canadian Journal of Civil Engineering,2001,28(3):363-374. doi: 10.1139/l00-117
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1041
  • HTML全文浏览量:  441
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 录用日期:  2020-06-12
  • 网络出版日期:  2020-06-24
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回