留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微胶囊层间增韧碳纤维/环氧树脂复合材料力学性能的超声导波评价

王奔 于晓启 赵国旗 骆英 郝文峰

王奔, 于晓启, 赵国旗, 等. 微胶囊层间增韧碳纤维/环氧树脂复合材料力学性能的超声导波评价[J]. 复合材料学报, 2021, 38(3): 788-796. doi: 10.13801/j.cnki.fhclxb.20200619.002
引用本文: 王奔, 于晓启, 赵国旗, 等. 微胶囊层间增韧碳纤维/环氧树脂复合材料力学性能的超声导波评价[J]. 复合材料学报, 2021, 38(3): 788-796. doi: 10.13801/j.cnki.fhclxb.20200619.002
WANG Ben, YU Xiaoqi, ZHAO Guoqi, et al. Ultrasonic guided wave-based evaluation for mechanical properties of interlaminar toughening carbon fiber/epoxy composites with microcapsules[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 788-796. doi: 10.13801/j.cnki.fhclxb.20200619.002
Citation: WANG Ben, YU Xiaoqi, ZHAO Guoqi, et al. Ultrasonic guided wave-based evaluation for mechanical properties of interlaminar toughening carbon fiber/epoxy composites with microcapsules[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 788-796. doi: 10.13801/j.cnki.fhclxb.20200619.002

微胶囊层间增韧碳纤维/环氧树脂复合材料力学性能的超声导波评价

doi: 10.13801/j.cnki.fhclxb.20200619.002
基金项目: 国家自然科学基金(11872025)
详细信息
    通讯作者:

    郝文峰,副研究员,博士生导师,研究方向为复合材料实验力学 E-mail:haowenfeng2007@163.com

  • 中图分类号: TB332

Ultrasonic guided wave-based evaluation for mechanical properties of interlaminar toughening carbon fiber/epoxy composites with microcapsules

  • 摘要: 选用微胶囊作为改性材料,采用热压机层压成型工艺制备出微胶囊层间增韧T300碳纤维/环氧树脂(CF/EP)复合材料。通过双悬臂梁(DCB)Ⅰ型层间断裂试验评估了CF/EP复合材料的增韧效果。利用超声导波技术对普通CF/EP复合材料和增韧CF/EP复合材料层间力学性能进行评价。通过SEM对CF/EP复合材料层间断面微观形貌进行观察,以揭示微胶囊的增韧机制,同时对超声导波检测结果进行辅助说明。结果表明,微胶囊以团聚形式分布在层间基体中,可以有效提高CF/EP复合材料的层间断裂韧性。微胶囊的填充改变了CF/EP复合材料层间基体特性,增加了导波传播过程中的衰减,导致响应信号峰值降低。同时,团聚的微胶囊改变了CF/EP复合材料对于中心频率125 kHz五峰波激励的振动响应,导致中心频率在信号频谱中的幅值低于普通CF/EP复合材料。

     

  • 图  1  微胶囊的微观形貌

    Figure  1.  Micrographs of microcapsules

    图  2  压电换能器(PZT)激励的导波检测双悬臂梁(DCB)

    Figure  2.  Guided wave detection of double cantilever beam (DCB) actuated by piezoelectric transducer (PZT)

    图  3  导波评价原理示意图

    Figure  3.  Schematic diagram of guided wave evaluation principle

    图  4  激励信号

    Figure  4.  Excitation signal

    图  5  碳纤维/环氧树脂(CF/EP)复合材料双悬臂梁(DCB)Ⅰ型层间断裂的载荷-位移曲线

    Figure  5.  Load-displacement curves of mode Ⅰ interlaminar fracture for carbon fiber/epoxy (CF/EP) composites double cantilever beam (DCB)

    图  6  普通CF/EP复合材料和微胶囊层间增韧CF/EP复合材料试样Ⅰ型层间断裂韧性(GIc)

    Figure  6.  Mode Ⅰ interlaminar fracture toughness (GIc) of virgin CF/EP composites and microcapsules interlaminar-toughening CF/EP composites

    图  7  普通CF/EP复合材料和微胶囊层间增韧CF/EP复合材料时域上的响应信号

    Figure  7.  Response signals in time-domain of virgin CF/EP composites and microcapsules interlaminar-toughening CF/EP composites

    图  8  普通CF/EP复合材料和微胶囊层间增韧CF/EP复合材频域上的响应信号

    Figure  8.  Response signals in frequency-domain of virgin CF/EP composits and microcapsules interlaminar-toughening CF/EP composites

    图  9  普通CF/EP复合材料Ⅰ型层间断裂微观形貌的SEM图像

    Figure  9.  SEM images of mode Ⅰ interlaminar fractured morphologies of virgin CF/EP composites

    图  10  微胶囊层间增韧CF/EP复合材料的Ⅰ型层间断裂微观形貌的SEM图像

    Figure  10.  SEM images of mode Ⅰ interlaminar fractured morphologies of agglomerate microcapsules interlaminar-toughening CF/EP composites

    表  1  普通CF/EP复合材料和微胶囊层间增韧CF/EP复合材料中心频率125 kHz的幅值Af

    Table  1.   Amplitude Af of center frequency 125 kHz of virgin CF/EP composites and microcapsules interlaminar-toughening CF/EP composites

    Type of sampleAf of 1#/VAf of 2#/VAf of 3#/V
    Virgin DCB0.77210.92440.9413
    Toughened DCB0.35480.19830.1562
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285.

    DONG H M, YI X S, AN X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica,2014,31(2):273-285(in Chinese).
    [3] HAO W F, GE D Y, MA Y J, et al. Experimental investigation on deformation and strength of carbon/epoxy laminated curved beams[J]. Polymer Testing,2012,31(4):520-526. doi: 10.1016/j.polymertesting.2012.02.003
    [4] STEVANOVIC D. Delamination properties of a vinyl-ester/glass fibre composite toughened by particulate-modified interlayers[D]. Canberra: Australian National University, 2001.
    [5] ALJARRAH M T, ABDELAL N R. Improvement of the mode Ⅰ interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber[J]. Composites Part B: Engineering,2019,165:379-385. doi: 10.1016/j.compositesb.2019.01.065
    [6] 郭壮壮, 徐武, 余音. 低温环境下测试复合材料Ⅰ型层间断裂韧性的简易方法[J]. 复合材料学报, 2019, 36(5):154-159.

    GUO Z Z, XU W, YU Y. A simple method for determining mode Ⅰ interlaminar fracture toughness of composite at low temperature[J]. Acta Materiae Compositae Sinica,2019,36(5):154-159(in Chinese).
    [7] GAO Y, LIU L, WU Z J, et al. Toughening and self-healing fiber-reinforced polymer composites using carbon nanotube modified poly(ethylene-co-methacrylic acid) sandwich membrane[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105510. doi: 10.1016/j.compositesa.2019.105510
    [8] 高峰, 矫桂琼, 宁荣昌, 等. 层间颗粒增韧复合材料层压板的损伤阻抗特性[J]. 复合材料学报, 2005, 22(2):116-120. doi: 10.3321/j.issn:1000-3851.2005.02.022

    GAO F, JIAO G Q, NING R C, et al. Damage resistance of the composite laminates with interlayer thermoplastic particles[J]. Acta Materiae Compositae Sinica,2005,22(2):116-120(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.02.022
    [9] 莫正才, 胡程耀, 霍冀川, 等. 苎麻短纤维层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2017, 34(6):1237-1244.

    MO Z C, HU C Y, HUO J C, et al. Interlayer-toughening carbon fiber/epoxy composites with short ramie fiber[J]. Acta Materiae Compositae Sinica,2017,34(6):1237-1244(in Chinese).
    [10] OU Y, GONZALEZ C, JOSE V J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105477. doi: 10.1016/j.compositesa.2019.105477
    [11] WILLIAMS J, GRADDAGE N, RAHATEKAR S. Effects of plasma modified carbon nanotube interlaminar coating on crack propagation in glass epoxy composites[J]. Composites Part A: Applied Science & Manufacturing,2013,54:173-181.
    [12] 姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5):1083-1091.

    YAO J W, LIU M Y, NIU Y F. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(5):1083-1091(in Chinese).
    [13] 孙筱辰. 纤维复合材料层合板的层间增韧及低速冲击研究[D]. 济南: 山东大学, 2015.

    SUN X C. Study on interlayer toughening and low-speed impact of fiber composite laminate[D]. Jinan: Shandong University, 2015(in Chinese).
    [14] KAYNAN O, ATESCAN Y, OZDEN-YENIGUN E, et al. Mixed mode delamination in carbon nanotube/nanofiber interlayered composites[J]. Composites Part B: Engineering,2018,154:186-194. doi: 10.1016/j.compositesb.2018.07.032
    [15] GHAZALI H, YE L, ZHANG M Q. Interlaminar fracture of CF/EP composite containing a dual-component microencapsulated self-healant[J]. Composites Part A: Applied Science and Manufacturing,2016,82:226-234. doi: 10.1016/j.compositesa.2015.12.012
    [16] ASTM International. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—13[S]. West Conshohocken: ASTM International, 2013.
    [17] ROSE J L. Ultrasonic electrospun nylon s in solid media[M]. New York: Cambridge University Press, 1999.
    [18] WANG D, YE L, TANG Y, et al. Monitoring of delamination onset and growth during mode Ⅰ and mode Ⅱ interlaminar fracture tests using guided waves[J]. Composites Science and Technology,2012,72(2):145-151. doi: 10.1016/j.compscitech.2011.10.004
    [19] ZHAO G Q, WANG B, WANG T, et al. Detection and monitoring of delamination in composite laminates using ultrasonic guided wave[J]. Composite Structures,2019,225:111161. doi: 10.1016/j.compstruct.2019.111161
    [20] SOLODOV I Y. Ultrasonics of non-linear contacts: Propagation, reflection and NDE-applications[J]. Ultrasonics,1998,36(1-5):383-390. doi: 10.1016/S0041-624X(97)00041-3
    [21] 宋国荣, 徐煜阳, 吕炎, 等. 特殊制备材料力学性能超声无损检测与评价方法[J]. 北京工业大学学报, 2017, 43(10):1449-1456.

    SONG G R, XU Y Y, LV Y, et al. Ultrasonic nondestructive testing and evaluation method of special processing mechanical properties[J]. Journal of Beijing University of Technology,2017,43(10):1449-1456(in Chinese).
    [22] MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring: A review[J]. Smart Materials and Structures,2016,25(5):053001. doi: 10.1088/0964-1726/25/5/053001
    [23] WILCOX P D, LOWE M J S, CAWLEY P. Mode and transducer selection for long range lamb wave inspection[J]. Journal of Intelligent Material Systems and Structures,2001,12(8):553-565. doi: 10.1177/10453890122145348
    [24] MEI H, GIURGIUTIU V. Guided wave excitation and propagation in damped composite plates[J]. Structural Health Monitoring,2019,18(3):690-714. doi: 10.1177/1475921718765955
    [25] SOLEIMANPOUR R, NG C T, WANG C H. Higher harmonic generation of guided waves at delamination in laminated composite beams[J]. Structural Health Monitoring,2017,16(4):400-417. doi: 10.1177/1475921716673021
    [26] ESKIZEYBEK V, YAR A, AVCI A. CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved mode Ⅰ interlaminar fracture toughness[J]. Composites Science and Technology,2018,157:30-39. doi: 10.1016/j.compscitech.2018.01.021
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1112
  • HTML全文浏览量:  396
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 录用日期:  2020-06-08
  • 网络出版日期:  2020-06-19
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回