留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂载荷下钢带缠绕增强复合管力学特性

张杰 梁博丰

张杰, 梁博丰. 复杂载荷下钢带缠绕增强复合管力学特性[J]. 复合材料学报, 2021, 38(1): 246-254. doi: 10.13801/j.cnki.fhclxb.20200617.004
引用本文: 张杰, 梁博丰. 复杂载荷下钢带缠绕增强复合管力学特性[J]. 复合材料学报, 2021, 38(1): 246-254. doi: 10.13801/j.cnki.fhclxb.20200617.004
ZHANG Jie, LIANG Bofeng. Mechanical properties of reinforced composite pipe wound with steel strip under complex loads[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 246-254. doi: 10.13801/j.cnki.fhclxb.20200617.004
Citation: ZHANG Jie, LIANG Bofeng. Mechanical properties of reinforced composite pipe wound with steel strip under complex loads[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 246-254. doi: 10.13801/j.cnki.fhclxb.20200617.004

复杂载荷下钢带缠绕增强复合管力学特性

doi: 10.13801/j.cnki.fhclxb.20200617.004
基金项目: 四川省科技计划(19YYJC0824);中国博士后科学基金(2019M653839XB);四川省科技创新苗子工程重点项目(20MZGC0090);四川省青年科技创新团队(2019JDTD0017)
详细信息
    通讯作者:

    张杰,博士,副研究员,硕士生导师,研究方向为管道力学及完整性评价 E-mail:Longmenshao@163.com

  • 中图分类号: TB333; TB125

Mechanical properties of reinforced composite pipe wound with steel strip under complex loads

  • 摘要: 为研究海洋油气输送用钢带缠绕增强复合管在复杂载荷下的力学响应特性,考虑非线性接触,建立钢带缠绕增强复合管数值计算模型,研究由内外压、弯曲及拉伸载荷组合作用下钢带缠绕增强复合管的变形及承载性能。结果表明,压差(外压大于内压,≤2 MPa)越大钢带缠绕增强复合管的柔性越高。与纯弯曲相比,拉伸载荷和压差的附加联合作用使钢带缠绕增强复合管柔性降低;与纯拉伸相比,弯曲载荷和压差的附加联合作用则使钢带缠绕增强复合管抗拉承载能力降低。与单一载荷相比,复杂载荷下内、外聚乙烯(PE)管的高应力区位置及内层钢带对称应力分布的路径发生改变。钢带螺旋角度及摩擦系数越大,钢带缠绕增强复合管柔性越低;增大摩擦系数,钢带缠绕增强复合管承载能力提高。组合弯曲载荷下随着钢带螺旋角增大,钢带缠绕增强复合管屈曲时的临界弯矩呈非单调变化,存在极大值。研究结果可为钢带缠绕增强复合管的设计、制造及安全评价提供理论依据。

     

  • 图  1  钢带缠绕增强复合管结构及数值计算模型

    Figure  1.  Structure and numerical calculation model of reinforced composite pipe wound with steel strip

    PE—Polyethylene

    图  2  钢带缠绕增强复合管数值模型与试验及解析解对比

    Figure  2.  Comparison of numerical model, experimental and analytical model results of reinforced composite pipe wound with steel strip

    图  3  不同拉伸载荷作用下钢带缠绕增强复合管的力学性能

    Figure  3.  Mechanical properties of reinforced composite pipe wound with steel strip under different tensile loads

    图  4  不同弯曲载荷作用下钢带缠绕增强复合管的力学性能

    Figure  4.  Mechanical properties of reinforced composite pipe wound with steel strip under different bending loads

    图  5  内层和外层聚乙烯(PE)管在纯拉伸和组合拉伸下的应力分布

    Figure  5.  Stress distributions of inner and outer polyethylene (PE) pipes under pure tensile and combined tensile loads

    图  6  内层和外层PE管在纯拉伸和组合拉伸作用下的应力和应变

    Figure  6.  Stress and strain of inner and outer PE pipes under pure tensile and combined tensile loads

    图  7  内层和外层PE管在纯弯曲和组合弯曲下的应力分布

    Figure  7.  Stress distribution of inner and outer PE pipes under pure bending loads and combined bending loads

    图  8  内层和外层PE管在纯弯曲和组合弯曲作用下应力和应变

    Figure  8.  Stress and strain of inner and outer PE pipes under pure bending and combined bending loads

    图  9  内层缠绕钢带应力云图及节点Mises应力

    Figure  9.  Stress cloud diagram of inner wound steel strip and Mises stress of nodes

    图  10  组合拉伸载荷作用下螺旋角对钢带缠绕增强复合管拉伸性能影响

    Figure  10.  Effect of helix angles on tensile properties of reinforced composite pipe wound with steel strip under combined tensile load

    图  11  组合弯曲载荷作用下螺旋角对钢带缠绕增强复合管弯曲性能影响

    Figure  11.  Effect of helix angles on bending properties of reinforced composite pipe wound with steel strip under combined bending load

    图  12  组合拉伸载荷作用下摩擦系数对钢带缠绕增强复合管拉伸性能的影响

    Figure  12.  Effect of friction coefficients on tensile properties of reinforced composite pipe wound with steel strip under combined tensile load

    图  13  组合弯曲下摩擦系数对钢带缠绕增强复合管弯曲性能影响

    Figure  13.  Effect of friction coefficients on bending properties of reinforced composite pipe wound with steel strip under combined bending load

    表  1  钢带缠绕增强复合管的几何模型及材料参数

    Table  1.   Geometric and material parameters of reinforced composite pipe wound with steel strip

    ModelInner ring radius/mmThickness/mmHelix angle/(°)Width/mmE/GPaμYield strength/MPa
    Inner PE pipe 25.0 6.0 1.04 0.40 20
    Inner steel strip 31.0 0.5 54.7 52 199.00 0.26 850
    Outer steel strip 31.5 0.5 −54.7 52 199.00 0.26 850
    Protective layer 32.0 1.0 1.04 0.40 20
    Outer PE pipe 33.0 4.0 1.04 0.40 20
    Notes: E—Elastic modulus; μ—Poisson’s ratio.
    下载: 导出CSV
  • [1] 原帅. 径向压力作用下非粘接柔性管极限承载力研究[D]. 杭州: 浙江大学, 2017.

    YUAN Shuai. Ultimate capacity study for unbonded flexible pipes under pressures[D]. Hangzhou: Zhejiang University, 2017(in Chinese).
    [2] 何琦, 汪鹏. 深海能源开发现状和前景研究[J]. 海洋开发与管理, 2017, 34(12):66-71.

    HE Qi, WANG Peng. Current situation and prospect of deep sea energy development[J]. Ocean Development and Management,2017,34(12):66-71(in Chinese).
    [3] 孙巍. 深海石油工程装备技术发展现状及展望[J]. 中外能源, 2012, 17(9):9-14.

    SUN Wei. Deep-sea petroleum engineering equipment and technology today and prospects[J]. Sino-Global Energy,2012,17(9):9-14(in Chinese).
    [4] 杨旭, 孙丽萍, 艾尚茂. 深水无粘结柔性管抗拉伸层屈曲问题研究进展[J]. 海洋工程, 2013, 31(1):95-102.

    YANG Xu, SUN Liping, AI Shangmao. Recent research of deepwater unbonded flexible pipe tensile armor layer’s buckling behaviors[J]. The Ocean Engineering,2013,31(1):95-102(in Chinese).
    [5] 方娜, 陈国明, 朱红卫, 等. 海底管道泄漏事故统计分析[J]. 油气储运, 2014, 33(1):99-103.

    FANG Na, CHEN Guoming, ZHU Hongwei, et al. Statistical analysis of leakage accidents of submarine pipeline[J]. Oil & Gas Storage and Transportation,2014,33(1):99-103(in Chinese).
    [6] BAI Y, LIU T, CHENG P, et al. Buckling stability of steel strip reinforced thermoplastic pipe subjected to external pressure[J]. Composite Structures,2016,152:528-537. doi: 10.1016/j.compstruct.2016.05.051
    [7] BAI Y, HAN P H, LIU T, et al. Mechanical responses of metallic strip flexible pipe subjected to combined bending and external pressure[J]. Ships and Offshore Structures,2018,13(3):320-329.
    [8] BAI Y, LIU T, RUAN W D, et al. Mechanical behavior of metallic strip flexible pipe subjected to tension[J]. Composite Structures,2017,170:1-10.
    [9] JIANG K, LIU T, YUAN S, et al. Mechanical behaviors of metallic strip flexible pipe under axisymmetric loads[C]//ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid: ASME, 2018.
    [10] BAI Y, CHEN W, XIONG H C, et al. Analysis of steel strip reinforced thermoplastic pipe under internal pressure[J]. Ships and Offshore Structures,2016,11(7):766-773. doi: 10.1080/17445302.2015.1063470
    [11] LIU T, LEIRA B J, FU P, et al. Reliability-base safety factor for metallic strip flexible pipe subjected to external pressure[J]. Ocean Engineering,2018,148:48-52.
    [12] 姜豪, 杨和振. 组合载荷作用下深海非粘结柔性管力学性能对比分析[J]. 海洋工程, 2014, 32(5):93-99.

    JIANG Hao, YANG Hezhen. Machanical analysis of deepwater unbonded flexible riser under combined loads[J]. The Ocean Engineering,2014,32(5):93-99(in Chinese).
    [13] GONG S F, HU Q, BAO S, et al. Asymmetric buckling of offshore pipelines under combined tension, bending external pressure[J]. Ships and Offshore Structures,2015,10(2):162-175. doi: 10.1080/17445302.2014.918310
    [14] SERTÃ O, FUMIS R, CONNAIRE A, at al. Predictions of armour wire buckling for a flexible pipe under compression, bending and external pressure loading[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro: ASME, 2012: 361-365.
    [15] FE´RET J J, BOURNAL C L. Calculataion of stress and slip in structural layers of unbonded flexible pipes[J]. Journal of Offshore Mechanics and Arctic Engineering,1987,109(3):263-269. doi: 10.1115/1.3257019
    [16] BATHTUI A. Development of a constitutive model to simulate unbonded flexible riser pipe elements[D]. London: Brunel University, 2008.
    [17] RAMOS R, PESCE C P. A consistent analytical model to predict the structural behavior of flexible risers subjected to combined loads[J]. Journal of Offshore Mechanics and Arctic Engineering,2004,126(2):141-146. doi: 10.1115/1.1710869
    [18] RAMOS R, KAWANO A. Local structural analysis of flexible pipes subjected to traction, torsion and pressure loads[J]. Marine Structures,2015,42:95-114.
    [19] MERINO H E M, DE SOUSA J R M, MAGLUTA C, et al. A study on the extensional-torsional response of a damaged flexible pipe[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro: ASME, 2012: 385-393.
    [20] GONG S F, WANG X P, ZHANG T, et al. Buckle propagation of sandwich pipes under external pressure[J]. Engineering Structures,2018,175:339-354. doi: 10.1016/j.engstruct.2018.08.033
    [21] XUE J H. A non-linear finite-element analysis of buckle propagation in subsea corroded pipelines[J]. Finite Elements in Analysis & Design,2006,42(14-15):1211-1219.
    [22] XUE J H, GAN N. A comprehensive study on a propagating buckle in externally pressurized pipelines[J]. Journal of Mechanical Science and Technology,2014,28(12):4907-4919. doi: 10.1007/s12206-014-1110-6
    [23] XUE J H, WANG Y, YUAN D. A shear deformation theory for bending and buckling of undersea sandwich pipes[J]. Composite Structures,2015,132:633-643. doi: 10.1016/j.compstruct.2015.06.004
    [24] 刘婷. 钢带缠绕复合管力学性能及可靠性分析[D]. 杭州: 浙江大学, 2018.

    LIU Ting. Mechanical behaviors and reliability analysis of steel strip reinforced flexible pipes[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1015
  • HTML全文浏览量:  466
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-11
  • 录用日期:  2020-06-11
  • 网络出版日期:  2020-06-18
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回