留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境温度对压电纤维复合材料性能的影响

张炯炯 袁晰 闫明洋 张少峰 陈卓 张斗

张炯炯, 袁晰, 闫明洋, 等. 环境温度对压电纤维复合材料性能的影响[J]. 复合材料学报, 2021, 38(2): 583-590. doi: 10.13801/j.cnki.fhclxb.20200617.001
引用本文: 张炯炯, 袁晰, 闫明洋, 等. 环境温度对压电纤维复合材料性能的影响[J]. 复合材料学报, 2021, 38(2): 583-590. doi: 10.13801/j.cnki.fhclxb.20200617.001
ZHANG Jiongjiong, YUAN Xi, YAN Mingyang, et al. Effect of ambient temperature on the properties of piezoelectric fiber composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 583-590. doi: 10.13801/j.cnki.fhclxb.20200617.001
Citation: ZHANG Jiongjiong, YUAN Xi, YAN Mingyang, et al. Effect of ambient temperature on the properties of piezoelectric fiber composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 583-590. doi: 10.13801/j.cnki.fhclxb.20200617.001

环境温度对压电纤维复合材料性能的影响

doi: 10.13801/j.cnki.fhclxb.20200617.001
基金项目: 国家自然科学基金(U19A2087);粉末冶金国家重点实验室自主课题
详细信息
    通讯作者:

    陈卓,博士,副教授,研究方向为高分子吸能复合材料及多孔材料的制备 E-mail:cz2009@csu.edu.cn

    张斗,博士,教授,研究方向为压电、铁电陶瓷及复合材料与应用研究 E-mail:dzhang@csu.edu.cn

  • 中图分类号: TB332

Effect of ambient temperature on the properties of piezoelectric fiber composites

  • 摘要: 针对压电纤维复合材料在航天、航空领域的应用,研究极端环境温度对复合材料性能的影响。首先制备了基于锆钛酸铅(PZT)陶瓷的压电纤维复合材料,然后测试环境温度对压电纤维复合材料电学阻抗、自由应变、驱动性能和力学性能的影响。结果表明,环境温度对压电纤维复合材料的阻抗相位角差值有显著影响。随着环境温度的升高,压电纤维复合材料的自由应变和悬臂梁驱动性能均先增加后减小,环境温度为20℃时性能最佳,样品的最大纵向自由应变为604.0×10−6,驱动铝板悬臂梁产生的顶端位移为0.789 mm。当环境温度为−88℃和80℃时,样品最大纵向自由应变分别为20℃时的46.9%和51.3%,顶端位移分别为20℃时的79.6%和83.7%。当环境温度从−88℃升高至80℃时,压电纤维复合材料的抗拉强度逐渐提升。

     

  • 图  1  测试平台原理图

    Figure  1.  Test platform schematic

    图  2  压电纤维复合材料

    Figure  2.  Piezoelectric fiber composites

    PZT—Lead zirconate titanate

    图  3  不同环境温度下压电纤维复合材料的阻抗频谱曲线及相位角差值与环境温度的关系

    Figure  3.  Impedance spectra of piezoelectric fiber composites with different temperatures and phase angles of different ambient temperatures

    图  4  压电纤维复合材料的纵向自由应变和横向自由应变频谱图

    Figure  4.  Free strain spectra of piezoelectric fiber composites in longitudinal and transverse directions

    图  5  不同环境温度下压电纤维复合材料的纵向自由应变和横向自由应变

    Figure  5.  Free strain performances of piezoelectric fiber composites in longitudinal and transverse directions at various temperatures

    图  6  不同环境温度下压电纤维复合材料的等效纵向压电系数d33和等效横向压电系数d31

    Figure  6.  Equivalent piezoelectric coefficients of piezoelectric fiber composites in longitudinal d33 and transverse d31 directions at various temperatures

    图  7  不同环境温度下压电纤维复合材料的顶端位移

    Figure  7.  Tip displacement of piezoelectric fiber composites with different ambient temperatures

    图  8  不同环境温度下压电纤维复合材料的拉伸应力-位移曲线

    Figure  8.  Tensile stress-displacement curves of piezoelectric fiber composites at different ambient temperatures

  • [1] 宋维力. 智能电磁材料与结构综述[J]. 表面技术, 2020, 49(2):12-17.

    SONG W L. Review of smart electromagnetic materials and structures[J]. Surface Technology,2020,49(2):12-17(in Chinese).
    [2] 王希晰, 曹茂盛. 低维电磁功能材料研究进展[J]. 表面技术, 2020, 49(2):18-28.

    WANG X X, CAO M S. Low-dimensional electromagnetic functional materials[J]. Surface Technology,2020,49(2):18-28(in Chinese).
    [3] 沈星, 冯伟, 李仁. 具有大驱动位移的复合结构型PZT压电陶瓷[J]. 复合材料学报, 2005, 22(6):44-48. doi: 10.3321/j.issn:1000-3851.2005.06.008

    SHEN X, FENG W, LI R. Large-displacement PZT piezoelectrics with composite structure[J]. Acta Materiae Compositae Sinica,2005,22(6):44-48(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.06.008
    [4] HAGOOD N W, KINDEL R, GHANDI K, et al. Improving transverse actuation of piezoceramics using interdigitated surface electrodes[C]//Smart Structures and Materials 1993: Smart Structures and Intelligent Systems. Albuquerque: SPIE, 1993: 341-352.
    [5] BILGEN O, FLORES E I, FRISWELL M I. Optimization of surface-actuated piezocomposite variable-camber morphing wings[C]//ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Scottsdale: ASME, 2011: 315-322.
    [6] BILGEN O, KOCHERSBERGER K B, INMAN D J. Novel, bi-directional, variable camber airfoil via macro-fiber composite actuators[J]. Journal of Aircraft,2010,47(1):303-314. doi: 10.2514/1.45452
    [7] THIEN A B, CHIAMORI H C, CHING J T, et al. The use of macro-fibre composites for pipeline structural health assessment[J]. Structural Control & Health Monitoring,2010,15(1):43-63.
    [8] WANG X M, ZHOU W Y, XUN G B, et al. Dynamic shape control of piezocomposite-actuated morphing wings with vibration suppression[J]. Journal of Intelligent Material Systems and Structures,2018,29(3):358-370. doi: 10.1177/1045389X17708039
    [9] CHAI Y Y, SONG Z G, LI F M. Active aerothermoelastic flutter suppression of composite laminated panels with time-dependent boundaries[J]. Composite Structures,2017,179:61-76. doi: 10.1016/j.compstruct.2017.07.053
    [10] SHI Y, HALLETT S R, ZHU M L. Energy harvesting behaviour for aircraft composites structures using macro-fibre composite: Part I-Integration and experiment[J]. Compo-site Structures,2017,160:1279-1286. doi: 10.1016/j.compstruct.2016.11.037
    [11] PLACZEK M, KOKOT G. Modelling and laboratory tests of the temperature influence on the efficiency of the energy harvesting system based on MFC piezoelectric transducers[J]. Sensors,2019,19(7):1558. doi: 10.3390/s19071558
    [12] LIN X J, ZHOU K C, BUTTON T W, et al. Fabrication, characterization and modeling of piezoelectric fiber compo-sites[J]. Journal of Applied Physics,2013,114(2):027015. doi: 10.1063/1.4812224
    [13] 陈子琪, 朱松, 林秀娟, 等. 纤维厚度和体积分数对压电纤维复合物应变性能的影响[J]. 无机材料学报, 2015, 30(6):571-575. doi: 10.15541/jim20140565

    CHEN Z Q, ZHU S, LIN X J, et al. Effects of fiber thickness and volume fraction on the strain performance of piezoelectric fiber composites[J]. Journal of Inorganic Materials,2015,30(6):571-575(in Chinese). doi: 10.15541/jim20140565
    [14] 陈海燕, 林秀娟, 陈子琪, 等. TiO2含量对压电纤维复合材料抗拉及驱动应变性能的影响[J]. 无机材料学报, 2015, 30(2):165-170. doi: 10.15541/jim20140269

    CHEN H Y, LIN X J, CHEN Z Q, et al. Influence of TiO2 content on the tensile and actuation properties of piezoelectric fiber composites[J]. Journal of Inorganic Materials,2015,30(2):165-170(in Chinese). doi: 10.15541/jim20140269
    [15] WU M L, YUAN X, LUO H, et al. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO3 nanoparticles in epoxy resin[J]. Physics Letters A,2017,381(19):1641-1647. doi: 10.1016/j.physleta.2017.02.025
    [16] BOWEN C R, NELSON L J, STEVENS R, et al. Optimisation of interdigitated electrodes for piezoelectric actuators and active fiber composites[J]. Journal of Electroceramics,2006,16(4):263-269. doi: 10.1007/s10832-006-9862-8
    [17] PANDEY A, AROCKIARAJAN A. Fatigue study on the actuation performance of macro fiber composite (MFC): Theoretical and experimental approach[J]. Smart Materials and Structures,2017,26(3):035018. doi: 10.1088/1361-665X/aa59e9
    [18] HENSLEE I A, MILLER D A, TEMPERO T. Fatigue life characterization for piezoelectric macrofiber composites[J]. Smart Materials and Structures,2012,21(10):105037. doi: 10.1088/0964-1726/21/10/105037
    [19] HOBECK J D, OWEN R B, INMAN D J. Residual thermal effects in macro fiber composite actuators exposed to persistent temperature cycling[J]. Applied Physics Letters,2016,108(11):111901. doi: 10.1063/1.4943947
    [20] KUNGL H, HOFFMANN M J. Temperature dependence of poling strain under high electric fields in LaSr-doped morphotropic PZT and its relation to change in structural characteristics[J]. Acta Materialia,2007,55(17):5780-5791. doi: 10.1016/j.actamat.2007.06.035
    [21] WEBBER K G, AULBACH E, KEY T, et al. Temperature-dependent ferroelastic switching of soft lead zirconate titanate[J]. Acta Materialia,2009,57(15):4614-4623. doi: 10.1016/j.actamat.2009.06.037
    [22] SENOUSYM S, RAJAPAKSE R K, GADALA M S. A temperature-dependent two-step domain-switching model for ferroelectric materials[J]. Acta Materialia,2009,57(20):6135-6145. doi: 10.1016/j.actamat.2009.08.039
    [23] ZHOU C R, LIU X Y. Effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi1/2Na1/2)TiO3 piezoelectric ceramics[J]. Materials Chemistry & Physics,2008,108(3):413-416.
    [24] HOOKER M W. Properties of PZT-based piezoelectric ceramics between −150 and 250℃, NASA/CR-1998-208708[R]. Washington: NASA, 1998.
    [25] ATITALLAH H B, OUNAIES Z, MULIANA A. Temperature and time dependence of the electro-mechanical properties of flexible active fiber composites[J]. Smart Materials and Structures,2016,25(4):045002. doi: 10.1088/0964-1726/25/4/045002
    [26] MASYS A J, REN W, YANG G, et al. Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias[J]. Journal of Applied Physics,2003,94(2):1155-1162. doi: 10.1063/1.1587008
    [27] DRAGAN D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics[J]. Reports on Progress in Physics,1998,61:1267-1324. doi: 10.1088/0034-4885/61/9/002
    [28] HALL D A. Review nonlinearity in piezoelectric ceramics[J]. Journal of Materials Science,2001,36:4575-4601. doi: 10.1023/A:1017959111402
    [29] LI B, CAO M S, LIU J, et al. Domain structure and enhanced electrical properties in sodium bismuth titanate ceramics sintered from crystals with different morphologies[J]. Journal of the American Ceramic Society,2016,99(7):2316-2326. doi: 10.1111/jace.14211
    [30] ZOU D J, DU C C, LIU T J, et al. Effects of temperature on the performance of the piezoelectric-based smart aggregates active monitoring method for concrete structures[J]. Smart Materials and Structures,2019,28(3):035016. doi: 10.1088/1361-665X/aafe15
    [31] SHARMA S, VIG R, KUMAR N. Temperature compensation in a smart structure by application of DC bias on piezoelectric patches[J]. Journal of Intelligent Material Systems and Structures,2016,27(18):2524-2535. doi: 10.1177/1045389X16633769
    [32] BRUNNER A J, BIRCHMEIER M, MELNYKOWYCZ M M, et al. Piezoelectric fiber composites as sensor elements for structural health monitoring and adaptive material systems[C]//6th International Conference on Advanced Composites. Greece: Journal of Intelligent Material Systems and Structures, 2009: 1045-1055.
    [33] WANG X Y, YUAN X, WU M L, et al. Effect of epoxy resin on the actuating performance of piezoelectric fiber compo-sites[J]. Sensors,2019,19(8):1809. doi: 10.3390/s19081809
    [34] NELSON L J, BOWEN C R, STEVENS R, et al. Modelling and measurement of piezoelectric fibres and interdigitated electrodes for the optimisation of piezofibre compo-sites[C]//Smart Structures and Materials 2003 Conference. San Diego: SPIE, 2003: 556-567.
    [35] 刘新, 武湛君, 何辉永, 等. 单向碳纤维增强树脂基复合材料的超低温力学性能[J]. 复合材料学报, 2017, 34(11):2437-2445.

    LIU X, WU Z J, HE H Y, et al. Cryogenic mechanical properties of unidirectional carbon fiber reinforced epoxy composite[J]. Acta Materiae Compositae Sinica,2017,34(11):2437-2445(in Chinese).
    [36] LI H, CHEN G, SU H, et al. Effect of the stoichiometric ratio on the crosslinked network structure and cryogenic properties of epoxy resins cured at low temperature[J]. European Polymer Journal,2019,112:792-798. doi: 10.1016/j.eurpolymj.2018.10.051
  • 加载中
图(8)
计量
  • 文章访问数:  1168
  • HTML全文浏览量:  713
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 录用日期:  2020-06-06
  • 网络出版日期:  2020-06-17
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回