留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯醇纤维增强水泥复合材料板的冲切性能

李安令 张朝辉 郭帅成 朱德举

李安令, 张朝辉, 郭帅成, 等. 聚乙烯醇纤维增强水泥复合材料板的冲切性能[J]. 复合材料学报, 2021, 38(3): 902-910. doi: 10.13801/j.cnki.fhclxb.20200616.001
引用本文: 李安令, 张朝辉, 郭帅成, 等. 聚乙烯醇纤维增强水泥复合材料板的冲切性能[J]. 复合材料学报, 2021, 38(3): 902-910. doi: 10.13801/j.cnki.fhclxb.20200616.001
LI Anling, ZHANG Zhaohui, GUO Shuaicheng, et al. Punching performance of polyvinyl alcohol fiber reinforced cementitious composite slab[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 902-910. doi: 10.13801/j.cnki.fhclxb.20200616.001
Citation: LI Anling, ZHANG Zhaohui, GUO Shuaicheng, et al. Punching performance of polyvinyl alcohol fiber reinforced cementitious composite slab[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 902-910. doi: 10.13801/j.cnki.fhclxb.20200616.001

聚乙烯醇纤维增强水泥复合材料板的冲切性能

doi: 10.13801/j.cnki.fhclxb.20200616.001
基金项目: 国家自然科学基金(51778220;U1806225);长沙市科学计划项目(KQ1907115);湖南省研究生科研创新项目(CX2016B109)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为生物材料多尺度力学行为及仿生、高性能纤维/织物增强水泥基和树脂基复合材料、防弹高性能纤维布的力学特性和有限元分析、冲击和高应变率试验技术  E-mail:dzhu@hnu.edu.cn

  • 中图分类号: TB332; TU528.572

Punching performance of polyvinyl alcohol fiber reinforced cementitious composite slab

  • 摘要: 利用MTS试验机对聚乙烯醇纤维(PVA)/水泥复合材料板进行准静态冲切试验,研究了不同PVA纤维掺量对其破坏形态和承载力的影响。结果表明:掺入PVA纤维能够将水泥基板的破坏形态由脆性破坏转为延性破坏。PVA/水泥复合材料板的冲切极限荷载和耗能能力均随PVA纤维掺量增加而增大,其中耗能能力的增大更显著。进一步采用Instron 落锤冲击系统对PVA纤维体积分数为2vol%的PVA/水泥复合材料板进行动力冲切试验,研究冲切速度(2.0~4.2 m/s)对PVA/水泥复合材料板的破坏形态、初裂荷载、极限荷载、初始刚度及耗能性能的影响。结果表明:与准静态试验相比,冲切荷载作用下PVA/水泥复合材料板的极限荷载增大,而耗能减少;此外相对初裂荷载和耗能,极限荷载的冲切速度相关性最显著。基于上述结果,构建了纤维增强水泥复合材料四线型拉伸本构模型,并通过反算模型和塑性铰线方法对纤维增强水泥复合材料板的冲切力学性能进行模拟,并得到材料的本构参数。本研究可以为PVA/水泥复合材料的抗冲切设计提供技术支撑。

     

  • 图  1  静态及低速冲击试验装置及安装

    Figure  1.  Test instruments and set up for static and low-velocity impact tests

    图  2  不同PVA/水泥复合材料试件的典型破坏形态

    Figure  2.  Typical failure modes of different PVA/cementitious composite specimens

    图  3  不同PVA纤维掺量的PVA/水泥复合材料板的荷载-位移曲线

    Figure  3.  Load-displacement curves of PVA/cementitious composite slabs with different PVA fiber contents

    图  4  不同冲击速度时PVA纤维体积掺量为2vol%的PVA/水泥复合材料板的冲击力-位移曲线

    Figure  4.  Impact loading-displacement curves of PVA/cementitious composite slabs with PVA fiber content of 2vol% under different punching velocities

    图  5  PVA纤维掺量对PVA/水泥复合材料板力学性能的影响

    Figure  5.  Influences of fiber content on mechanical properties of PVA/cementitious composite slabs

    图  6  冲击速度对PVA/水泥复合材料板力学性能的影响

    Figure  6.  Effects of impact velocity on mechanical properties of PVA/cementitious composite slabs

    图  7  PVA/水泥复合材料板归一化冲击力${F_{\rm{d}}}$、位移$\delta $、冲击速度V和能量耗散En时程曲线

    Figure  7.  Time history curves of normalized impact loading ${F_{\rm{d}}}$, displacement $\delta $, velocity V and energy dissipation En of PVA/cementitious composite slabs

    图  8  纤维增强水泥复合材料本构模型

    Figure  8.  Constitutive model for fiber reinforced cementitious composite

    图  9  纤维增强水泥复合材料荷载-挠度响应求解流程[24]

    Figure  9.  Flow chart for solution of load-deflection responses of fiber reinforced cementitious composite[24]

    图  10  PVA/水泥复合材料板基于拉伸本构模型的测试结果与模拟结果对比

    Figure  10.  Comparison between measured data and simulated results of PVA/cementitious composite slabs based on tensile constitutive model

    表  1  聚乙烯醇(PVA)纤维性能指标

    Table  1.   Properties of polyvinyl alcohol (PVA) fiber

    Length/mmDiameter/μmTensile strength/MPaElastic modulus/GPaElongation rate/%Density/(g·cm−3)
    12 22 1620 42.8 7 1.3
    下载: 导出CSV

    表  2  PVA/水泥复合材料基体配比

    Table  2.   Mix ratio of PVA/cementitious composite

    CementSandWaterFly ashSika Viscocrete 3300
    110.350.150.009
    下载: 导出CSV

    表  3  PVA/水泥复合材料试件分组情况

    Table  3.   Groups of PVA/cementitious composite specimens

    Group IDNo. of replicateTest methodLoading speed/(m·s−1)Fiber volume fraction/vol%
    SS0 3 Static 4.16×10−4 0
    SS10 3 Static 4.16×10−4 1
    SS15 3 Static 4.16×10−4 1.5
    SS20 3 Static 4.16×10−4 2
    DS20 1 Impact 2 2
    DS28 1 Impact 2.8 2
    DS34 2 Impact 3.4 2
    DS42 2 Impact 4.2 2
    下载: 导出CSV

    表  4  PVA/水泥复合材料试件的模型参数

    Table  4.   Model parameters for PVA/cementitious composite specimens

    SpecimenE/GPaεcr/μεσcr/MPaα1α2ωη1η2η3βtu
    SS10 30 100 3.00 15.0 100.0 13 0.019 −0.014 −0.0030 300
    SS15 30 100 3.00 18.0 180.0 13 0.022 −0.006 −0.0020 500
    SS20 30 100 3.00 20.0 200.0 13 0.024 −0.006 −0.0015 650
    DS20 33 120 3.96 5.0 22.0 13 0.500 −0.015 −0.0010 200
    DS28 33 120 3.96 5.5 26.5 13 0.700 −0.170 −0.0010 400
    DS34 33 120 3.96 8.0 30.0 13 0.580 −0.201 −0.0020 400
    DS42 33 120 3.96 8.0 30.0 13 0.580 −0.190 −0.0020 450
    下载: 导出CSV
  • [1] PAKRAVAN H R, JAMSHIDI M, LATIFI M. Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers[J]. Construction and Building Materials,2016,112:739-746. doi: 10.1016/j.conbuildmat.2016.02.112
    [2] JEWELL R B, MAHBOUB K C, ROBL T L, et al. Interfacial bond between reinforcing fibers and calcium sulfoaluminate cements: Fiber pullout characteristics[J]. ACI Materials Journal,2015,112(1):39-48.
    [3] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,1992,118(11):2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [4] LI V C. On engineered cementitious composites (ECC)[J]. Journal of Advanced Concrete Technology,2003,1(3):215-230. doi: 10.3151/jact.1.215
    [5] OLIVEIRA A M D, SILVA F D A, FAIRBAIRN E D M R, et al. Coupled temperature and moisture effects on the tensile behavior of strain hardening cementitious composites (SHCC) reinforced with PVA fibers[J]. Materials and Structures,2018,51(3):65-77. doi: 10.1617/s11527-018-1192-1
    [6] MENG D, HUANG T, ZHANG Y X, et al. Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients[J]. Construction and Building Materials,2017,141:259-270. doi: 10.1016/j.conbuildmat.2017.02.158
    [7] MECHTCHERINE V, SILVA F D A, MÜLLER S, et al. Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers[J]. Cement and Concrete Research,2012,42(11):1417-1427. doi: 10.1016/j.cemconres.2012.08.011
    [8] QI B, KONG Q, QIAN H, et al. Study of impact damage in PVA-ECC beam under low-velocity impact loading using piezoceramic transducers and PVDF thin-film transducers[J]. Sensors,2018,18(2):671-687.
    [9] YANG E H, LI V C. Tailoring engineered cementitious composites for impact resistance[J]. Cement and Concrete Research,2012,42(8):1066-1071. doi: 10.1016/j.cemconres.2012.04.006
    [10] YANG E H, LI V C. Strain-rate effects on the tensile behavior of strain-hardening cementitious composites[J]. Construction and Building Materials,2014,52:96-104. doi: 10.1016/j.conbuildmat.2013.11.013
    [11] MAALEJ M, QUEK S, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact[J]. Journal of Materials in Civil Engineering,2005,17(2):143-152. doi: 10.1061/(ASCE)0899-1561(2005)17:2(143)
    [12] SORANAKOM C, MOBASHER B. Closed-form solutions for flexural response of fiber-reinforced concrete beams[J]. Journal of Engineering Mechanics,2007,133(8):933-941. doi: 10.1061/(ASCE)0733-9399(2007)133:8(933)
    [13] SORANAKOM C, MOBASHER B. Flexural design of fiber-reinforced concrete[J]. Materials Journal,2009,106(5):461-469.
    [14] YAO Y, WANG X, ASWANI K, et al. Analytical procedures for design of strain softening and hardening cement composites[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics,2017,9(3):181-194. doi: 10.1007/s12572-017-0187-4
    [15] SORANAKOM C, MOBASHER B. Correlation of tensile and flexural responses of strain softening and strain hardening cement composites[J]. Cement and Concrete Composites,2008,30(6):465-477. doi: 10.1016/j.cemconcomp.2008.01.007
    [16] 朱德举, 欧云福. 标距和应变率对Kevlar 49单束拉伸力学性能的影响[J]. 复合材料学报, 2016, 33(2):225-233.

    ZHU Deju, OU Yunfu. Effects of gauge length and strain rate on tensile mechanical properties of Kevlar 49 single yarn[J]. Acta Materiae Compositae Sinica,2016,33(2):225-233(in Chinese).
    [17] QU H, LI A, HUO J, et al. Dynamic performance of collar plate reinforced tubular T-joint with precompression chord[J]. Engineering Structures,2017,141:555-570. doi: 10.1016/j.engstruct.2017.03.037
    [18] HAN L H, HOU C C, LIU X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading[J]. Journal of Constructional Steel Research,2014,92:25-39. doi: 10.1016/j.jcsr.2013.09.003
    [19] AGHDAMY S, THAMBIRATNAM D P, DHANASEKAR M. Experimental investigation on lateral impact response of concrete-filled double-skin tube columns using horizontal-impact-testing system[J]. Experimental Mechanics,2016,56(7):1133-1153. doi: 10.1007/s11340-016-0156-z
    [20] International Organization for Standardization. Plastics: determination of charpy impact properties Part 2: Instrumented impact test: ISO 179—2∶2020[S]. Switzerland: International Organization for Standardization, 2020.
    [21] ZHAO W, GUO Q. Experimental study on impact and post-impact behavior of steel-concrete composite panels[J]. Thin-Walled Structures,2018,130:405-413. doi: 10.1016/j.tws.2018.06.012
    [22] YOUSUF M, UY B, TAO Z, et al. Impact behaviour of pre-compressed hollow and concrete filled mild and stainless steel columns[J]. Journal of Constructional Steel Research,2014,96:54-68. doi: 10.1016/j.jcsr.2013.12.009
    [23] NILSON A H, DARWIN D, DOLAN C W. Design of concrete structures[M]. McGraw-Hill Education, 2015.
    [24] ASWANI K. Design procedures for strain hardening cement composites (SHCC) and measurement of their shear properties by mechanical and 2-D digital image correlation (DIC) method[D]. Arizona: Arizona State University, 2014.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  939
  • HTML全文浏览量:  392
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 录用日期:  2020-06-04
  • 网络出版日期:  2020-06-16
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回