留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增强改性SiO2气凝胶复合材料的研究进展

张明

张明. 增强改性SiO2气凝胶复合材料的研究进展[J]. 复合材料学报, 2020, 37(11): 2674-2683. doi: 10.13801/j.cnki.fhclxb.20200615.001
引用本文: 张明. 增强改性SiO2气凝胶复合材料的研究进展[J]. 复合材料学报, 2020, 37(11): 2674-2683. doi: 10.13801/j.cnki.fhclxb.20200615.001
ZHANG Ming. Research progress of reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2674-2683. doi: 10.13801/j.cnki.fhclxb.20200615.001
Citation: ZHANG Ming. Research progress of reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2674-2683. doi: 10.13801/j.cnki.fhclxb.20200615.001

增强改性SiO2气凝胶复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20200615.001
详细信息
    通讯作者:

    张明,硕士,讲师,研究方向为精细与功能高分子材料 E-mail:448712189@qq.com

  • 中图分类号: TQ427

Research progress of reinforced SiO2 aerogel composites

  • 摘要: SiO2气凝胶是一种含有纳米介孔结构的轻质固体材料,具有高孔隙率、高比表面积、低导热性、低介电性等特性,在隔热、吸附、吸声、发光、催化、电子等工业领域具有广阔的应用前景。但SiO2气凝胶自身孔结构存在易碎、易坍塌等缺陷,导致应用受到较大限制。在保持SiO2气凝胶良好特性的前提下,对其进行增强改性制备力学性能优良的SiO2气凝胶复合材料是近年来的研究热点。本文报道了无机/有机纤维增强改性SiO2气凝胶、有机聚合物增强改性SiO2气凝胶及无机物掺杂增强改性SiO2气凝胶等复合材料的主要制备工艺过程、材料综合性能表现及增强改性机制,探讨了增强改性SiO2气凝胶复合材料研究进展及重点方向,以期为增强改性SiO2气凝胶复合材料的研究和应用提供新的设计思路。

     

  • 图  1  玻璃纤维(GF)/SiO2气凝胶复合材料的SEM图像[27]

    Figure  1.  SEM image of glass fiber (GF)/SiO2 aerogel composite[27]

    图  2  硅胶质量分数为5wt%的GF/SiO2气凝胶复合材料的SEM图像[29]

    Figure  2.  SEM image of GF/SiO2 aerogel composite with silica gel mass fraction of 5wt%[29]

    图  3  添加气相SiO2的GF/SiO2气凝胶复合材料的SEM图像[31]

    Figure  3.  SEM image of GF/SiO2 aerogel composite with fumed SiO2[31]

    图  4  聚醚基有机/无机复合SiO2气凝胶的SEM图像[48]

    Figure  4.  SEM image of polyether based organic/inorganic composite SiO2 aerogels[48]

    图  5  Ce(Ⅲ)/SiO2气凝胶复合材料的SEM图像[58]

    Figure  5.  SEM image of Ce(Ⅲ) /SiO2 aerogel composite[58]

  • [1] XIA T, YANG H L, LI J N, et al. Tailoring structure and properties of silica aerogels by varying the content of the tetramethoxysilane added in batches[J]. Microporous and Mesoporous Materials,2019,280:20-25. doi: 10.1016/j.micromeso.2019.01.038
    [2] ZHAO S Y, STOJANOVIC A, ANGELICA E, et al. Phase transfer agents facilitate the production of superinsulating silica aerogel powders by simultaneous hydrophobization and solvent- and ion-exchange[J]. Chemical Engineering Journal,2020,381:122421. doi: 10.1016/j.cej.2019.122421
    [3] FIDALGO A, FARINHA J P S, MARTINHO J M G, et al. Nanohybrid silica/polymer aerogels: The combined influence of polymer nanoparticle size and content[J]. Materials and Design,2020,189:108521. doi: 10.1016/j.matdes.2020.108521
    [4] PATIL R, KANKUPPI S. Comparison between experimental and theoretical thermal conductivity on epoxy based aluminium hydroxide and silica aerogel composite materials[J]. Materials Today: Proceedings,2020,27:509-514. doi: 10.1016/j.matpr.2019.11.311
    [5] ZENG Q, MAO T, LI H D, et al. Thermally insulating lightweight cement-based composites incorporating glass beads and nano-silica aerogels for sustainably energy-saving buildings[J]. Energy and Buildings,2018,174:97-110. doi: 10.1016/j.enbuild.2018.06.031
    [6] ZHANG H, FANG W Z, WANG X, et al. Thermal conductivity of fiber and opacifier loaded silica aerogel composite[J]. International Journal of Heat and Mass Transfer,2017,115:21-31. doi: 10.1016/j.ijheatmasstransfer.2017.08.006
    [7] SAAD N, CHAABAN M, PATRA D, et al. Molecularly imprinted phenyl-functionalized silica aerogels: Selective adsorbents for methylxanthines and PAHs[J]. Microporous and Mesoporous Materials,2020,292:109759. doi: 10.1016/j.micromeso.2019.109759
    [8] MIAO Y J, PUDUKUDY M, ZHI Y F, et al. A facile method for in situ fabrication of silica/cellulose aerogels and their application in CO2 capture[J]. Carbohydrate Polymers,2020,236:116079. doi: 10.1016/j.carbpol.2020.116079
    [9] TALEBI Z, SOLTANI P, HABI N, et al. Silica aerogel/polyester blankets for efficient sound absorption in buildings[J]. Construction and Building Materials,2019,220:76-89. doi: 10.1016/j.conbuildmat.2019.06.031
    [10] GUTZOV S, DANCHOVA N, KIRILOVA R, et al. Preparation and luminescence of silica aerogel composites containing an europium (Ⅲ) phenanthroline nitrate complex[J]. Journal of Luminescence,2017,183:108-112. doi: 10.1016/j.jlumin.2016.11.029
    [11] SASHKINA K A, GURIKOV P A, AYUPOV A B, et al. Zeolite/silica aerogel composite monoliths and microspheres[J]. Microporous and Mesoporous Materials,2018,263:106-112. doi: 10.1016/j.micromeso.2017.12.010
    [12] BOZOGLU D, DELIGOZ H, ULUTAS K, et al. Structural and dielectrical characterization of low-k polyurethane composite films with silica aerogel[J]. Journal of Physics and Chemistry of Solids,2019,130:46-57. doi: 10.1016/j.jpcs.2019.02.013
    [13] NICOLAON G, TEICHNER S. The preparation of silica aerogels from methylorthosilicate in an alcoholic medium and their properties[J]. Journal of Sol-Gel Science and Technology,1975,12(1):45-57.
    [14] WOIGNIER T, PHALIPPOU J. Mechanical strength of silica aerogels[J]. Journal of Non-Crystalline Solids,1988,100(1-3):404-408. doi: 10.1016/0022-3093(88)90054-3
    [15] 沈军, 王钰, 吴翔, 等. 硅气凝胶的结构控制研究[J]. 材料科学与工艺, 1994, 2(4):87-93.

    SHEN Jun, WANG Yu, WU Xiang, et al. Structural control of silica aerogels[J]. Materials Science and Technology,1994,2(4):87-93(in Chinese).
    [16] CAI H F, JIANG Y G, FENG J, et al. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol[J]. Materials and Design,2020,191:108640. doi: 10.1016/j.matdes.2020.108640
    [17] LI M, JIANG Y H, XU D, et al. Low density and hydrophobic silica aerogels dried under ambient pressure using a new co-precursor method[J]. Journal of Non-Crystalline Solid,2016,452:187-193. doi: 10.1016/j.jnoncrysol.2016.09.001
    [18] GAO H Y, BO L J, LIU P P, et al. Ambient pressure dried flexible silica aerogel for construction of monolithic shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells,2019,201:110122. doi: 10.1016/j.solmat.2019.110122
    [19] WANG Q, MAHADIK D B, METI P, et al. Dioxybenzene-bridged hydrophobic silica aerogels with enhanced textural and mechanical properties[J]. Microporous and Mesoporous Materials,2020,294:109863. doi: 10.1016/j.micromeso.2019.109863
    [20] WU X D, ZHONG K, DING J, et al. Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique[J]. Journal of Non-Crystalline Solids,2020,530:119826. doi: 10.1016/j.jnoncrysol.2019.119826
    [21] KHEDKAR M V, SOMVANSHI S B, HUMBE A V, et al. Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process[J]. Journal of Non-Crystalline Solids,2019,511:140-146. doi: 10.1016/j.jnoncrysol.2019.02.004
    [22] JÚLIO M D F, ILHARCO L M. Hydrophobic granular silica-based aerogels obtained from ambient pressure monoliths[J]. Materialia,2020,9:100527. doi: 10.1016/j.mtla.2019.100527
    [23] DORCHEH A S, ABBASI M H. Silica aerogel: Synthesis, properties and characterization[J]. Journal of Materials Processing Technology,2008,199(1-3):10-26. doi: 10.1016/j.jmatprotec.2007.10.060
    [24] YANG Z C, YU H J, LI X L, et al. Hyperelastic and hydrophobic silica aerogels with enhanced compressive strength by using VTES/MTMS as precursors[J]. Journal of Non-Crystalline Solids,2019,525:119677. doi: 10.1016/j.jnoncrysol.2019.119677
    [25] ROCHA H, LAFONT U, SEMPRIMOSCHNIG C. Environmental testing and characterization of fibre reinforced silica aerogel materials for Mars exploration[J]. Acta Astronautica,2019,165:9-16. doi: 10.1016/j.actaastro.2019.07.030
    [26] YANG X G, SUN Y T, SHI D Q, et al. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite[J]. Materials Science and Engineering A,2011,529(13-14):4830-4836.
    [27] ZHOU T, CHENG X D, PAN Y L, et al. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying[J]. Applied Surface Science,2018,437:321-328. doi: 10.1016/j.apsusc.2017.12.146
    [28] LI C C, CHENG X D, LI Z, et al. Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites[J]. Journal of Non-Crystalline Solids,2017,457:52-59. doi: 10.1016/j.jnoncrysol.2016.11.017
    [29] SHAFI S, NAVIK R, DING X, et al. Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel[J]. Journal of Non-Crystalline Solids,2019,503-504:78-83. doi: 10.1016/j.jnoncrysol.2018.09.029
    [30] SHAFI S, TIAN J Q, NAVIK R, et al. Fume silica improves the insulating and mechanical performance of silica aerogel/glass fiber composite[J]. The Journal of Supercritical Fluids,2019,148:9-15. doi: 10.1016/j.supflu.2019.02.027
    [31] TIAN J Q, SHAFI S, TAN H J, et al. Mechanical and thermal-insulating performance of silica aerogel enhanced jointly with glass fiber and fumed silica by a facile compressing technique[J]. Chemical Physics Letters,2020,739:136950.
    [32] TANG X B, SUN A H, CHU C Y, et al. A novel silica nanowire-silica composite aerogels dried at ambient pressure[J]. Materials and Design,2017,115:415-421. doi: 10.1016/j.matdes.2016.11.080
    [33] DU D X, JIANG Y G, FENG J Z, et al. Facile synthesis of silica aerogel composites via ambient-pressure drying without surface modification or solvent exchange[J]. Vacuum,2020,173:109117. doi: 10.1016/j.vacuum.2019.109117
    [34] HOU X B, ZHANG R B, FANG D N. An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J]. Scripta Materialia,2018,143:113-116. doi: 10.1016/j.scriptamat.2017.09.028
    [35] LI Z, GONG L L, CHENG X D, et al. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior[J]. Materials and Design,2016,99:349-355. doi: 10.1016/j.matdes.2016.03.063
    [36] LI Z, GONG L L, LI C C, et al. Silica aerogel/aramid pulp composites with improved mechanical and thermal properties[J]. Journal of Non-Crystalline Solids,2016,454:1-7. doi: 10.1016/j.jnoncrysol.2016.10.015
    [37] 刘石, 任强, 李锦春, 等. 芳纶浆粕对膨胀阻燃聚丙烯性能影响[J]. 复合材料学报, 2013, 30(5):79-85. doi: 10.3969/j.issn.1000-3851.2013.05.013

    LIU Shi, REN Qiang, LI Jinchun, et al. Influence of Kevlar pulp on the properties of intumescent flame-retardant polypropylene[J]. Acta Materiae Compositae Sinica,2013,30(5):79-85(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.013
    [38] 欧华杰, 陈港, 朱朋辉, 等. 纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能[J]. 复合材料学报, DOI: 10.13801/j.cnki.fhclxb.20200306.003.

    OU Huajie, CHEN Gang, ZHU Penghui, et al. Preparation and strain sensitive performance of cellulose nanofiber-carbon nanotubes/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica,DOI: 10.13801/j.cnki.fhclxb.20200306.003(in Chinese).
    [39] WONG J C H, KAYMAK H, TINGAUT P, et al. Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites[J]. Microporous and Mesoporous Materials,2015,217:150-158. doi: 10.1016/j.micromeso.2015.06.025
    [40] FU J J, WANG S Q, HE C X, et al. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold[J]. Carbohydrate Polymers,2016,147:89-96. doi: 10.1016/j.carbpol.2016.03.048
    [41] MENG Y J, YOUNG T M, LIU P Z, et al. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material[J]. Cellulose,2015,22(1):435-447. doi: 10.1007/s10570-014-0519-5
    [42] SAI H Z, FU R, XIANG J H, et al. Fabrication of elastic silica-bacterial cellulose composite aerogels with nanoscale interpenetrating network by ultrafast evaporative drying[J]. Composites Science and Technology,2018,155:72-80. doi: 10.1016/j.compscitech.2017.11.004
    [43] ZHAO S Y, EMERY O, WOHLHAUSER A, et al. Merging flexibility with superinsulation: Machinable, nanofibrous pullulan-silica aerogel composites[J]. Materials and Design,2018,160:294-302. doi: 10.1016/j.matdes.2018.09.010
    [44] ULBRICHT M. Design and synthesis of organic polymers for molecular separation membranes[J]. Current Opinion in Chemical Engineering,2020,28:60-65. doi: 10.1016/j.coche.2020.02.002
    [45] ZHU J D, HU J, JIANG C W, et al. Ultralight, hydrophobic, monolithic konjac glucomannan-silica composite aerogel with thermal insulation and mechanical properties[J]. Carbohydrate Polymers,2019,207:246-225. doi: 10.1016/j.carbpol.2018.11.073
    [46] CHO J, JANG H G, KIM S Y, et al. Flexible and coatable insulating silica aerogel/polyurethane composites via soft segment control[J]. Composites Science and Technology,2019,171:244-251. doi: 10.1016/j.compscitech.2018.12.027
    [47] BONAB S A, MOGHADDAS J, REZAEI M. In-situ synthesis of silica aerogel/polyurethane inorganic-organic hybrid nanocomposite foams: Characterization, cell microstructure and mechanical properties[J]. Polymer,2019,172:27-40. doi: 10.1016/j.polymer.2019.03.050
    [48] REZAEI S, ZOLALI A M, JALALI A, et al. Novel and simple design of nanostructured, super-insulative and flexiblehybrid silica aerogel with a new macromolecular polyether-based precursor[J]. Journal of Colloid and Interface Science,2020,561:890-901. doi: 10.1016/j.jcis.2019.11.072
    [49] CHOI H, PARALE V G, KIM T, et al. Structural and mechanical properties of hybrid silica aerogel formed using triethoxy(1-phenylethenyl) silane[J]. Microporous and Mesoporous Materials,2020,298:110092. doi: 10.1016/j.micromeso.2020.110092
    [50] WANG Q, YU H, ZHANG Z Y, et al. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates[J]. Journal of Colloid and Interface Science,2020,573:62-70. doi: 10.1016/j.jcis.2020.03.118
    [51] WANG L K, FENG J Z, JIANG Y G, et al. Polyvinylmethyldimethoxysilane reinforced methyltrimethoxysilane based silica aerogels for thermal insulation with super-high specific surface area[J]. Materials Letters,2019,256:126644. doi: 10.1016/j.matlet.2019.126644
    [52] REZAEI S, JALALI A, ZOLALI A M, et al. Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure[J]. Journal of Colloid and Interface Science,2019,548:206-216. doi: 10.1016/j.jcis.2019.04.028
    [53] SOORBAGHI F P, KOKABI M, BAHRAMIAN A R. Predicting the effective thermal conductivity of silica/clay mineral nanocomposite aerogels[J]. International Journal of Heat and Mass Transfer,2019,136:899-910. doi: 10.1016/j.ijheatmasstransfer.2019.03.059
    [54] ZU G Q, SHEN J, ZOU L P, et al. Highly thermally stable zirconia/silica composite aerogels prepared by supercritical deposition[J]. Microporous and Mesoporous Materials,2017,238:90-96. doi: 10.1016/j.micromeso.2016.03.005
    [55] PENG F, JIANG Y G, FENG J Z, et al. A facile method to fabricate monolithic alumina-silica aerogels with high surface areas and good mechanical properties[J]. Journal of the European Ceramic Society,2020,40(6):2480-2488. doi: 10.1016/j.jeurceramsoc.2020.01.058
    [56] 冯坚, 高庆福, 武纬, 等. 硅含量对Al2O3-SiO2 气凝胶结构和性能的影响[J]. 无机化学学报, 2009, 25(10):1758-1763. doi: 10.3321/j.issn:1001-4861.2009.10.010

    FENG Jian, GAO Qingfu, WU Wei, et al. Effect of silica content on structure and properties of Al2O3-SiO2 aerogels[J]. Chinese Journal of Inorganic Chemistry,2009,25(10):1758-1763(in Chinese). doi: 10.3321/j.issn:1001-4861.2009.10.010
    [57] ZHANG H, YANG F, BAI R X, et al. Facile preparation of Ce enhanced vinyl-functionalized silica aerogel-like monoliths for selective separation of radioactive thorium from monazite[J]. Materials and Design,2020,186:108333. doi: 10.1016/j.matdes.2019.108333
    [58] YE X L, CHEN Z F, AI S F, et al. Microstructure characterization and thermal performance of reticulated SiC skeleton reinforced silica aerogel composites[J]. Composites Part B: Engineering,2019,177:107409. doi: 10.1016/j.compositesb.2019.107409
    [59] LAMY-MENDES A, GIRÃO A V, SILVA R F, et al. Polysilsesquioxane-based silica aerogel monoliths with embedded CNTs[J]. Microporous and Mesoporous Materials,2019,288:109575. doi: 10.1016/j.micromeso.2019.109575
    [60] SUN T, ZHUO Q, LIU X, et al. Hydrophobic silica aerogel reinforced with carbon nanotube for oils removal[J]. Journal of Porous Materials,2014,21(6):967-973. doi: 10.1007/s10934-014-9845-0
    [61] PATIL S P, SHENDYE P, MARKERT B. Molecular dynamics simulations of silica aerogel nanocomposites reinforced by glassfibers, graphene sheets and carbon nanotubes: A comparison study on mechanical properties[J]. Composites Part B: Engineering,2020,190:107884. doi: 10.1016/j.compositesb.2020.107884
    [62] ŚLOSARCZYK A, BAREŁKOWSKI M, NIEMIER S, et al. Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions[J]. Journal of Sol-Gel Science and Technology,2015,76(1):227-232. doi: 10.1007/s10971-015-3798-x
    [63] KARAMIKAMKAR S, NAGUIB H E, PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review[J]. Advances in Colloid and Interface Science,2020,276:102101. doi: 10.1016/j.cis.2020.102101
    [64] YANG H X, LI C M, YUE X D, et al. New BN/SiOC aerogel composites fabricated by the sol-gel method with excellent thermal insulation performance at high temperature[J]. Materials & Design,2020,185:108217.
  • 加载中
图(5)
计量
  • 文章访问数:  1112
  • HTML全文浏览量:  354
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 录用日期:  2020-06-01
  • 网络出版日期:  2020-06-15
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回