留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型Co3O4和WC共沉积β-PbO2电极用于锌电解沉积及电化学性能研究

孙利 徐瑞东 何世伟 吴天益

孙利, 徐瑞东, 何世伟, 等. 新型Co3O4和WC共沉积β-PbO2电极用于锌电解沉积及电化学性能研究[J]. 复合材料学报, 2021, 38(2): 557-571. doi: 10.13801/j.cnki.fhclxb.20200610.006
引用本文: 孙利, 徐瑞东, 何世伟, 等. 新型Co3O4和WC共沉积β-PbO2电极用于锌电解沉积及电化学性能研究[J]. 复合材料学报, 2021, 38(2): 557-571. doi: 10.13801/j.cnki.fhclxb.20200610.006
SUN Li, XU Ruidong, HE Shiwei, et al. A novel Co3O4 and WC co-doped β-PbO2 electrode for zinc electrowinning: Deposition behavior and electrochemical properties[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 557-571. doi: 10.13801/j.cnki.fhclxb.20200610.006
Citation: SUN Li, XU Ruidong, HE Shiwei, et al. A novel Co3O4 and WC co-doped β-PbO2 electrode for zinc electrowinning: Deposition behavior and electrochemical properties[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 557-571. doi: 10.13801/j.cnki.fhclxb.20200610.006

新型Co3O4和WC共沉积β-PbO2电极用于锌电解沉积及电化学性能研究

doi: 10.13801/j.cnki.fhclxb.20200610.006
基金项目: 国家自然科学基金(51904005;51874154);安徽省自然科学基金(1908085QE191);冶金减排与资源综合利用教育部重点实验室开放基金(KF17-09)
详细信息
    通讯作者:

    何世伟,博士,讲师,研究方向为湿法冶金用复合电极材料 E-mail:heshiweiahut@163.com

  • 中图分类号: TQ153

A novel Co3O4 and WC co-doped β-PbO2 electrode for zinc electrowinning: Deposition behavior and electrochemical properties

  • 摘要: 采用复合电沉积技术在Pb-0.3wt%Ag/α-PbO2基体上合成了WC和Co3O4颗粒共沉积的β-PbO2复合沉积层。沉积行为研究发现,WC颗粒先于Co3O4颗粒吸附于基体上,将WC颗粒与Co3O4颗粒共沉积是一种抑制当Co3O4颗粒单独共沉积于β-PbO2沉积层时发生团聚情况的有效方法。电极性能研究发现,WC或Co3O4颗粒的共沉积均会提高复合阳极的析氧电催化活性,此外,WC颗粒还有助于提高复合阳极的显微硬度和在Zn电解沉积溶液中的耐腐蚀性能。Co3O4颗粒的共沉积不利于β-PbO2相的生长,WC颗粒的共沉积对β-PbO2相的生长影响不大,两种颗粒同时共沉积有助于抑制酸性镀液中α-PbO2相的生长。

     

  • 图  1  电极制备过程示意图

    Figure  1.  Schematic diagram of electrode preparation process

    图  2  两种颗粒的SEM图像

    Figure  2.  SEM images of the two original particles

    图  3  β-PbO2镀液中不同超声分散时间下的颗粒粒径和Zeta电位

    Figure  3.  Particle size and Zeta potential for particles in a β-PbO2 plating bath at different ultrasonic dispersion times

    图  4  不同沉积时间下的β-PbO2-WC-Co3O4沉积层的XRD图谱

    Figure  4.  XRD patterns of β-PbO2-WC-Co3O4 coatings obtained at different deposition time

    图  5  不同沉积时间下的β-PbO2-Co3O4沉积层的SEM图像和示意图

    Figure  5.  SEM images and schematic diagram for β-PbO2-Co3O4 coatings obtained at different deposition time

    图  6  不同沉积时间下的β-PbO2-WC-Co3O4沉积层的SEM图像和示意图

    Figure  6.  SEM images and schematic diagram for β-PbO2-WC-Co3O4 coatings obtained at different deposition time

    图  7  沉积时间为30 s时获得的β-PbO2-WC-Co3O4沉积层的点扫描能谱

    Figure  7.  Energy spectrum for the β-PbO2-WC-Co3O4 coating for 30 s of electrodeposition

    图  8  沉积时间为2 min时获得的β-PbO2-WC-Co3O4沉积层的点扫描能谱

    Figure  8.  Energy spectrum for the β-PbO2-WC-Co3O4 coating for 2 min of electrodeposition

    图  9  沉积时间为5 min时获得的β-PbO2-WC-Co3O4沉积层的点扫描能谱

    Figure  9.  Energy spectrum for the β-PbO2-WC-Co3O4 coating for 5 min of electrodeposition

    图  10  不同电极在Zn电解沉积模拟溶液中的阳极极化曲线(扫速速率:5 mV/s)

    Figure  10.  Anodic polarization curves for different electrodes in a simulation Zn electrowinning solution (Scan rate: 5 mV/s)

    图  11  不同电极在Zn电解沉积模拟溶液中的Tafel极化曲线(扫速速率:1 mV/s)

    Figure  11.  Tafel polarization curves for different β-PbO2 coating electrodes in a simulation Zn electrowinning solution (Scan rate: 1 mV/s)

    图  12  几种β-PbO2复合沉积层的XRD图谱

    Figure  12.  XRD patterns for different β-PbO2 coating electrodes

    图  13  几种β-PbO2复合沉积层的SEM图像

    Figure  13.  SEM images for different β-PbO2 coating electrodes

    图  14  β-PbO2-WC复合沉积层的线扫描能谱

    Figure  14.  Energy spectrum for β-PbO2-WC coating by line scanning

    图  15  β-PbO2-Co3O4复合沉积层的点扫描能谱

    Figure  15.  Energy spectrum for β-PbO2-Co3O4 coating by point scanning

    图  16  β-PbO2-WC-Co3O4复合沉积层的点扫描能谱

    Figure  16.  Energy spectrum for β-PbO2-WC-Co3O4 coating by point scanning

    图  17  β-PbO2-WC-Co3O4复合电极截面的线扫描能谱

    Figure  17.  Energy spectrum for the cross section of β-PbO2-WC-Co3O4 coating electrode by line scanning

    表  1  不同复合电极的沉积层厚度和表面显微硬度

    Table  1.   Surface microhardness and resistivity of different composite electrodes

    Composite
    electrode
    Coating
    thickness/μm
    Surface
    microhardness (HV)
    β-PbO2 117.5 738.5
    β-PbO2-WC 128.9 821.9
    β-PbO2-Co3O4 136.4 679.3
    β-PbO2-WC-Co3O4 132.4 762
    下载: 导出CSV

    表  2  不同电极在Zn电解沉积模拟溶液中析氧反应(OER)的动力学参数和过电位

    Table  2.   Kinetic parameters and overpotential for oxygen evolution reaction (OER) of different electrodes in a simulation Zn electrowinning solution

    Electrode typeOxygen evolution overpotential η/Vabi0/(A·cm−2)
    300 A·m−2400 A·m−2500 A·m−2600 A·m−2
    β-PbO2 0.934 0.963 0.986 1.004 1.289 0.233 2.94×10−6
    β-PbO2-WC 0.845 0.860 0.871 0.881 1.025 0.118 2.06×10−9
    β-PbO2-Co3O4 0.588 0.600 0.609 0.617 0.733 0.095 1.92×10−8
    β-PbO2-WC-Co3O4 0.608 0.642 0.668 0.689 1.018 0.269 1.64×10−4
    Notes: a—Tafel intercept; b—Tafel slope; i0—Exchange current density.
    下载: 导出CSV

    表  3  不同电极在Zn电解沉积模拟溶液中的腐蚀电位和腐蚀电流密度

    Table  3.   Corrosion potentials and corrosion current densities for different β-PbO2 coating electrodes in a simulation Zn electrowinning solution

    Electrode typeEcorr(vs SCE)/Vicorr/(10−5A·cm−2)
    β-PbO2 1.312 19.8
    β-PbO2-WC 1.314 5.68
    β-PbO2-Co3O4 1.298 8.02
    β-PbO2-WC-Co3O4 1.37 9.84
    Notes: Ecorr—Corrosion potential; icorr—Corrosion current.
    下载: 导出CSV
  • [1] JIN L, HUANG H, FEI Y, et al. Polymer anode used in hydrometallurgy: Anodic behaviour of PANI/CeO2/WC anode from sulfate electrolytes[J]. Hydrometallurgy,2018,176:201-207. doi: 10.1016/j.hydromet.2018.01.020
    [2] CHEN B, WANG S, LIU J, et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning[J]. Corrosion Science,2018,144:136-144. doi: 10.1016/j.corsci.2018.08.049
    [3] YANG H, LIU H, GUO Z, et al. Electrochemical behavior of rolled Pb-0.8%Ag anodes[J]. Hydrometallurgy,2013,140:144-150. doi: 10.1016/j.hydromet.2013.10.003
    [4] BODE H. Lead-acid batteries[M]. New York: Wiley, 1977.
    [5] DEVILLIERS D, DINH T, MAHÉ E, et al. Electroanalytical investigations on electrodeposited lead dioxide[J]. Journal of Electroanalytical Chemistry,2004,573(2):227-239. doi: 10.1016/j.jelechem.2004.07.008
    [6] CHEN B, GUO Z, HUANG H, et al. Effect of the current density on electrodepositing alpha-lead dioxide coating on aluminum substrate[J]. Acta Metallurgica Sinica,2009,22:373-382.
    [7] HE S, XU R, HU G, et al. Study on the electrosynthesis of Pb-0.3%Ag/α-PbO2 composite inert anode materials[J]. Electrochemistry,2015,83(11):974-978. doi: 10.5796/electrochemistry.83.974
    [8] HAO X, WUQI G, WU J, et al. Preparation and characterization of titanium-based PbO2 electrodes modified by ethylene glycol[J]. RSC Advances,2016,6(9):7610-7617. doi: 10.1039/C5RA21195F
    [9] PAVLOV D, MONAHOV B. Temperature dependence of the oxygen evolution reaction on the Pb/PbO2 electrode[J]. Journal of the Electrochemical Society,1998,145(1):70-77. doi: 10.1149/1.1838213
    [10] JOVIĆ B M, LAČNJEVAC U Č, JOVIĆ V D, et al. Kinetics of the oxygen evolution reaction on NiSn electrodes in alkaline solutions[J]. Journal of Electroanalytical Chemistry,2015,754:100-108. doi: 10.1016/j.jelechem.2015.07.013
    [11] SURENDRANATH Y, KANAN M W, GNOCERA D. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH[J]. Journal of the American Chemical Society,2010,132(46):16501-16509. doi: 10.1021/ja106102b
    [12] LI J, SHU C, HU A, et al. Tuning oxygen non-stoichiometric surface via defect engineering to promote the catalysis activity of Co3O4 in Li-O2 batteries[J]. Chemical Engineering Journal,2020,381:122678-122688. doi: 10.1016/j.cej.2019.122678
    [13] GAO R, SHANG Z, ZHENG L, et al. Enhancing the catalytic activity of Co3O4 nanosheets for Li-O2 batteries by the incoporation of oxygen vacancy with hydrazine hydrate reduction[J]. Inorganic Chemistry,2019,58:4989-4996. doi: 10.1021/acs.inorgchem.9b00007
    [14] WANG X, CHEN X, GAO L, et al. One-dimensional arrays of Co3O4 nanoparticles: Synthesis, characterization, and optical and electrochemical properties[J]. Journal of Physical Chemistry B,2004,108(42):16401-16404. doi: 10.1021/jp048016p
    [15] YAN Q, LI X, ZHAO Q, et al. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene[J]. Journal of Hazardous Materials,2012,209-210:385-391. doi: 10.1016/j.jhazmat.2012.01.039
    [16] XU M, FEI W, ZHAO M, et al. Molten hydroxides synthesis of hierarchical cobalt oxide nanostructure and its application as anode material for lithium ion batteries[J]. Electrochimica Acta,2011,56(13):4876-4881. doi: 10.1016/j.electacta.2011.03.027
    [17] WANG Z, WEI F, SUI Y, et al. A novel core-shell polyhedron Co3O4/MnCo2O4.5 as electrode materials for supercapacitors[J]. Ceramics International,2019,45:12558-12562. doi: 10.1016/j.ceramint.2019.03.010
    [18] XIONG L, TENG Y, WU Y. Large-scale synthesis of aligned Co3O4 nanowalls on nickel foam and their electrochemical performance for Li-ion batteries[J]. Ceramics International, 2014, 40(10): 15561-15568.
    [19] WANG F, LU C C, QIN Y, et al. Solid state coalescence growth and electrochemical performance of plate-like Co3O4 mesocrystals as anode materials for lithium-ion batteries[J]. Journal of Power Sources,2013,235(4):67-73. doi: 10.1016/j.jpowsour.2013.01.190
    [20] DAN Y, LU H, LIU X, et al. Ti/PbO2+nano-Co3O4 composite electrode material for electrocatalysis of O2 evolution in alkaline solution[J]. International Journal of Hydrogen Energy,2011,36(3):1949-1954.
    [21] BERTONCELLO R, FURLANETTO F, GUERRIERO P, et al. Electrodeposited composite electrode materials: Effect of the concentration of the electrocatalytic dispersed phase on the electrode activity[J]. Electrochimica Acta,1999,44(23):4061-4068. doi: 10.1016/S0013-4686(99)00165-6
    [22] HE S, XU R, GUO Y, et al. Fabrication and nucleation study of β-PbO2-Co3O4 OER energy-saving electrode[J]. SN Applied Sciences,2019,1(3):219-227. doi: 10.1007/s42452-019-0228-7
    [23] LEVY R B, BOUDART M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science,1973,181:547-549. doi: 10.1126/science.181.4099.547
    [24] MCINTYRE D R, BURSTEIN G T, VOSSEN A. Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide[J]. Journal of Power Sources,2002,107(1):67-73. doi: 10.1016/S0378-7753(01)00987-9
    [25] ALIDOKHT S A, YUE S, CHROMIK R R. Effect of WC morphology on dry sliding wear behavior of cold-sprayed Ni-WC composite coatings[J]. Surface & Coatings Technology,2019,357:849-863.
    [26] NAMINI A S, AHMADI Z, BABAPOOR A, et al. Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC[J]. Ceramics International,2019,45:2153-2160. doi: 10.1016/j.ceramint.2018.10.125
    [27] HE L, TAN Y, WANG X, et al. Tribological properties of WC and CeO2 particles reinforced in-situ synthesized NiAl matrix composite coatings at elevated temperature[J]. Surface & Coatings Technology,2014,244:123-130.
    [28] HAMID Z A, GHAYAD I M, IBRAHIM K M. Electrodepo-sition and characterization of chromium-tungsten carbide composite coatings from a trivalent chromium bath[J]. Surface and Interface Analysis,2005,37:573-579. doi: 10.1002/sia.2052
    [29] BOONYONGMANEERAT Y, SAENGKIETTIYUT K, SAENAPITAK S, et al. Effects of WC addition on structure and hardness of electrodeposited Ni-W[J]. Surface & Coatings Technology,2009,203:3590-3594.
    [30] HUIXI L, ZHEN C, QIANG Y, et al. Effects of tungsten carbide on the electrocatalytic activity of PbO2-WC composite inert anodes during zinc electrowinning[J]. Journal of The Electrochemical Society,2017,164:H1064-H1071. doi: 10.1149/2.0791714jes
    [31] LIU J H, LIU F H, XU J, et al. Effect of current density on interface structure and performance of CF/β-PbO2 electrodes during zinc electrowinning[J]. Ceramics International,2020,46(2):2403-2408. doi: 10.1016/j.ceramint.2019.09.233
    [32] MARSALEK R. Particle size and zeta potential of ZnO[J]. Apcbee Procedia,2014,9:13-17.
    [33] TANG X, ZHENG H, TENG H, et al. An alternative method for preparation of polyaluminum chloride coagulant using fresh aluminum hydroxide gels: Characterization and coagulation performance[J]. Chemical Engineering Research & Design,2015,104:208-217.
    [34] SUSAN D F, BARMAK K, MARDER A R. Electrodeposited NiAl particle composite coatings[J]. Thin Solid Films,1997,307(1-2):133-140. doi: 10.1016/S0040-6090(98)80004-7
    [35] KEDWARD E C, WRIGHT K W, TENNETT A A B. The development of electrodeposited composites for use as wear control coatings on aero engines[J]. Tribology,1974,7(5):221-227.
    [36] GUGLIELMI N. Kinetics of the deposition of inert particles from electrolytic baths[J]. Journal of the Electrochemical Society,1972,119(8):1009-1012. doi: 10.1149/1.2404383
    [37] MUSIANI M, FURLANETTO F, GUERRIERO P. Electrochemical deposition and properties of PbO2+Co3O4 composites[J]. Journal of Electroanalytical Chemistry,1997,440:131-138.
    [38] LI Z, YU X Y, PAIK U. Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction[J]. Journal of Power Sources,2016,310:41-46. doi: 10.1016/j.jpowsour.2016.01.105
    [39] SONG X, YANG T, DU H, et al. New binary Mn and Cr mixed oxide electrocatalysts for the oxygen evolution reaction[J]. Journal of Electroanalytical Chemistry,2016,760:59-63. doi: 10.1016/j.jelechem.2015.11.044
    [40] ABREU-SEPULVEDA M, TRINH P, MALKHANDI S, et al. Investigation of oxygen evolution reaction at LaRuO3, La3.5Ru4O13, and La2RuO5 [J]. Electrochimica Acta,2015,180:401-408. doi: 10.1016/j.electacta.2015.08.067
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  1150
  • HTML全文浏览量:  560
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 录用日期:  2020-05-20
  • 网络出版日期:  2020-06-11
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回