留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯增强水泥复合材料的断裂性能

李欣 罗素蓉

李欣, 罗素蓉. 氧化石墨烯增强水泥复合材料的断裂性能[J]. 复合材料学报, 2021, 38(2): 612-621. doi: 10.13801/j.cnki.fhclxb.20200610.005
引用本文: 李欣, 罗素蓉. 氧化石墨烯增强水泥复合材料的断裂性能[J]. 复合材料学报, 2021, 38(2): 612-621. doi: 10.13801/j.cnki.fhclxb.20200610.005
LI Xin, LUO Surong. Fracture properties of graphene oxide reinforced cement composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 612-621. doi: 10.13801/j.cnki.fhclxb.20200610.005
Citation: LI Xin, LUO Surong. Fracture properties of graphene oxide reinforced cement composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 612-621. doi: 10.13801/j.cnki.fhclxb.20200610.005

氧化石墨烯增强水泥复合材料的断裂性能

doi: 10.13801/j.cnki.fhclxb.20200610.005
基金项目: 国家自然科学基金海峡联合基金重点项目(U1605242)
详细信息
    通讯作者:

    罗素蓉,教授,硕士生导师,研究方向为高性能混凝土材料与结构 E-mail:lsr@fzu.edu.cn

  • 中图分类号: TU528

Fracture properties of graphene oxide reinforced cement composites

  • 摘要: 将氧化石墨烯(GO)加入水泥砂浆中,以提高其抗裂性和韧性。通过三点弯曲梁法测试了GO增强水泥砂浆试件的断裂性能,采用双K断裂模型分析了GO掺量对改性水泥砂浆断裂参数的影响。结果表明:GO提高了水泥砂浆试件的起裂韧度,当GO掺量(与胶凝材料质量比)为0.01%~0.07%时,较对照组分别提高了13.4%、25.4%、24.6%和16.7%,但对失稳韧度的影响有限,不同GO掺量水泥砂浆的断裂能较对照组提高了10.7%~33.3%。结合微观试验发现,GO主要通过影响水泥水化过程,优化孔结构,促进高密度水化产物生成,提高水化产物间的粘结力,进而抑制微裂缝生成和发展。

     

  • 图  1  氧化石墨烯(GO)的微观形貌及硬度

    Figure  1.  Microscope morphology and thickness of grapheme oxide (GO)

    图  2  GO和聚羧酸高效减水剂(PC)的FTIR图谱

    Figure  2.  FTIR spectra of GO and polycarboxylate superplasticizer (PC)

    图  3  静置溶液

    Figure  3.  Static solutions ((a) GO; (b) Ca(OH)2; (c) GO+Ca(OH)2; (d) GO+PC+Ca(OH)2)

    图  4  断裂试件尺寸

    Figure  4.  Size of fracture specimen

    图  5  应变片布置

    Figure  5.  Strain gauge arrangement

    图  6  Cement和3GO/cement的载荷-应变曲线

    Figure  6.  Load-strain curves of Cement and 3GO/cement

    图  7  Cement和3GO/cement的荷载-裂缝口张开位移曲线

    Figure  7.  Load-crack mouth opening displacement curves of Cement and 3GO/cement

    图  8  Cement和3GO/cement的荷载-位移曲线

    Figure  8.  Load-deflection curves of Cement and 3GO/cement

    图  9  GO掺量对GO/水泥复合材料断裂能的影响

    Figure  9.  Effect of GO content on fracture energy of GO/cement composites

    图  10  不同GO掺量水泥砂浆的水化放热速率曲线

    Figure  10.  Hydration heat evolution rate curves of cement paste with different GO contents

    图  11  不同GO掺量水泥砂浆的孔隙率和孔径分布

    Figure  11.  Porosities and pore size distributions of cement paste with different GO contents

    图  12  不同GO掺量水泥砂浆的孔径分布曲线

    Figure  12.  Pore size distribution curves of cement paste with different GO contents

    图  13  不同GO掺量水泥砂浆的弹性模量概率分布

    Figure  13.  Probability distribution curves of elastic modulus of cement paste with different GO contents

    LS C-S-H—Low stiffness calcium silicate hydrate; HS C-S-H—High stiffness calcium silicate hydrate; CH—Ca(OH)2

    表  1  胶凝材料的化学组成

    Table  1.   Chemical composition of cementitious materials

    wt%
    CompositionCaOSiO2Al2O3Fe2O3MgO
    Cement 63.10 22.19 4.48 3.23 2.41
    Fly ash (FA) 2.18 53.61 25.95 7.69 3.88
    下载: 导出CSV

    表  2  GO/水泥复合材料配合比

    Table  2.   Mix proportions of GO/cement composites

    SpecimenGO/%Cement/gFly ash/gWater/gPC/%
    Cement 0 360 90 166.5 1.0
    1GO/cement 0.01 360 90 166.5 1.0
    3GO/cement 0.03 360 90 166.5 1.0
    5GO/cement 0.05 360 90 166.5 1.0
    7GO/cement 0.07 360 90 166.5 1.0
    Note: GO and PC contents are mass ratio to cementitious material.
    下载: 导出CSV

    表  3  GO/水泥复合材料试件的28天抗压、抗折强度

    Table  3.   28 days compressive and flexural strength of GO/cement composites

    SpecimenCement1GO/
    cement
    3GO/
    cement
    5GO/
    cement
    7GO/
    cement
    Compressive strength/MPa 40.09 46.95 51.18 49.99 47.35
    Flexural strength/MPa 7.86 8.28 9.01 8.89 8.33
    下载: 导出CSV

    表  4  GO/水泥复合材料三点弯曲试验结果

    Table  4.   Three-point bending beam test results of GO/cement composites

    GroupE/GPaPini/kNPmax/kNCMODc/μmac/mm$K_{{\rm{IC}}}^{{\rm{ini}}}$/(MPa·m1/2)$K_{{\rm{IC}}}^{{\rm{un}}}$/(MPa·m1/2)
    Cement 30.71 0.33 0.41 16.57 21.54 0.3589 0.6739
    C.V. 0.0557 0.0412
    1GO/cement 31.82 0.38 0.45 17.67 21.51 0.4089 0.7337
    C.V. 0.0375 0.0398
    3GO/cement 33.02 0.43 0.46 19.26 22.38 0.4500 0.7970
    C.V. 0.0426 0.0975
    5GO/cement 32.50 0.42 0.47 17.14 21.31 0.4472 0.7444
    C.V. 0.0554 0.1008
    7GO/cement 29.77 0.39 0.48 18.92 21.18 0.4188 0.7503
    C.V. 0.0435 0.1194
    Notes: C.V.—Coefficient of variation; E—Elasticity modulus; Pini—Crack load; Pmax—Maximum load; CMODc—Critical crack opening displacement corresponding to Pmax; ac—Critical equivalent fracture length; $K_{{\rm{IC}}}^{{\rm{ini}}}$—Fracture toughness; $K_{{\rm{IC}}}^{{\rm{un}}}$—Toughness of instability; Listed data are average values of each group.
    下载: 导出CSV

    表  5  不同GO掺量的水泥砂浆不同相的体积分数

    Table  5.   Volume fraction of different phases of cement mortar with different GO contents vol%

    Cement1GO/
    cement
    3GO/
    cement
    5GO/
    cement
    7GO/
    cement
    Porous phase 22.09 16.37 9.12 7.59 7.82
    Low stiffness C-S-H 36.16 34.72 26.94 26.17 24.92
    High stiffness C-S-H 31.09 35.84 48.26 50.06 49.36
    CH 10.66 13.07 15.68 16.18 17.90
    下载: 导出CSV
  • [1] 吴中伟, 廉惠珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999.

    WU Zhongwei, LIAN Huizhen. High performance concrete[M]. Beijing: China Railway Publishing House, 1999(in Chinese).
    [2] CAO M L, XU L, ZHANG C. Rheological and mechanical properties of hybrid fiber reinforced cement mortar[J]. Construction and Building Materials,2018,171:736-742. doi: 10.1016/j.conbuildmat.2017.09.054
    [3] 李庆华, 徐松杰, 徐世烺, 等. 采用碳纳米管提高纤维砂浆的起裂断裂韧度[J]. 建筑材料学报, 2017, 20(2):186-190. doi: 10.3969/j.issn.1007-9629.2017.02.005

    LI Qinghua, XU Songjie, XU Shilang, et al. Improvement of the initial fracture toughness of fiber mortar by carbon nanotubes[J]. Journal of Building Materials,2017,20(2):186-190(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.02.005
    [4] 张鹏, 李清富, 朱海堂, 等. 纳米SiO2和钢纤维增强混凝土的断裂韧度[J]. 建筑材料学报, 2017, 20(3):366-372. doi: 10.3969/j.issn.1007-9629.2017.03.008

    ZHANG Peng, LI Qingfu, ZHU Haitang, et al. Fracture toughness of nano-SiO2 and steel fiber reinforced concrete[J]. Journal of Building Materials,2017,20(3):366-372(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.03.008
    [5] 刘金涛. 基于纳米材料的活性粉末混凝土及其基本力学性能研究[D]. 杭州: 浙江大学, 2016.

    LIU Jintao. The mechanical properties of nanomaterials reinforced reactive powder concrete[D]. Hangzhou: Zhe-jiang University, 2016(in Chinese).
    [6] 施韬, 李泽鑫, 李闪闪. 碳纳米管增强水泥基复合材料的自收缩及抗裂性能[J]. 复合材料学报, 2019, 36(6):1528-1535.

    SHI Tao, LI Zexin, LI Shanshan. Autogenous shrinkage and crack resistance of carbon nanotubesreinforced cement based composites[J]. Acta Materiae Compositae Sinica,2019,36(6):1528-1535(in Chinese).
    [7] JUNG M J, LEE Y S, HONG S G, et al. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE)[J]. Cement and Concrete Research,2020,131:106017. doi: 10.1016/j.cemconres.2020.106017
    [8] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide–cement composite[J]. Cement and Concrete Composites,2015,58:140-147. doi: 10.1016/j.cemconcomp.2015.02.001
    [9] LI X Y, LU Z Y, CHUAH S, et al. Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste[J]. Composites Part A: Applied Science and Manufacturing,2017,100:1-8. doi: 10.1016/j.compositesa.2017.05.002
    [10] 武星星, 刘志芳, 王志勇, 等. 氧化石墨烯纳米片层增强水泥基复合材料的巴西圆盘劈裂试验研究[J]. 应用力学学报, 2018, 35(6):1333-1338, 1425.

    WU Xingxing, LIU Zhifang, WANG Zhiyong, et al. Brazilian disc splitting test of graphene oxide nanosheet reinforced cement matrix composites[J]. Chinese Journal of Applied Mechanics,2018,35(6):1333-1338, 1425(in Chinese).
    [11] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011.

    XU Shilang. Fracture mechanics of concrete[M]. Beijing: China Science Press, 2011(in Chinese).
    [12] LV S H, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and Building Materials,2013,49:121-127. doi: 10.1016/j.conbuildmat.2013.08.022
    [13] LIN C Q, WEI W, HU Y H. Catalytic behavior of graphene oxide for cement hydration process[J]. Journal of Physics and Chemistry of Solids,2016,89:128-133. doi: 10.1016/j.jpcs.2015.11.002
    [14] HORSZCZARUK E, MIJOWSKA E, KALENCZUK R J, et al. Nanocomposite of cement/graphene oxide-Impact on hydration kinetics and Young’s modulus[J]. Construction and Building Materials,2015,78:234-242. doi: 10.1016/j.conbuildmat.2014.12.009
    [15] WANG Q, LI S Y, PAN S, et al. Effect of graphene oxide on the hydration and microstructure of fly ash-cement system[J]. Construction and Building Materials,2019,198:106-119. doi: 10.1016/j.conbuildmat.2018.11.199
    [16] SAM G, PHILIPPE D, NEAL T S, et al. Understanding the behaviour of graphene oxide in Portland cement paste[J]. Cement and Concrete Research,2018,111:169-182. doi: 10.1016/j.cemconres.2018.05.016
    [17] 吕生华, 朱琳琳, 贾春茂, 等. PCs/GO复合物对水泥基材料微观结构和力学性能的影响[J]. 材料导报, 2017, 31(6):125-129, 135.

    LV Shenghua, ZHU Linlin, JIA Chunmao, et al. Influence of PCs/GO composites on microstructure and mechanical properties of cement based materials[J]. Materials Reports,2017,31(6):125-129, 135(in Chinese).
    [18] SABZIPARVAR A M, HOSSEINI E, CHINIFORUSH V, et al. Barriers to achieving highly dispersed graphene oxide in cementitious composites: An experimental and computational study[J]. Construction and Building Materials,2019,199:269-278. doi: 10.1016/j.conbuildmat.2018.12.030
    [19] 全国水泥标准化技术委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    National Technical Committee for Cement Standardization. Method of testing cements-Determination of strength: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [20] 徐世烺, 余秀丽, 李庆华. 电测法确定低强混凝土裂缝起裂和等效裂缝长度[J]. 工程力学, 2015, 32(12):89. doi: 10.6052/j.issn.1000-4750.2014.06.ST03

    XU Shilang, YU Xiuli, LI Qinghua. Determination of crack initiation and equivalent crack length of low strength concrete using strain gauges[J]. Engineering Mechanics,2015,32(12):89(in Chinese). doi: 10.6052/j.issn.1000-4750.2014.06.ST03
    [21] 徐世烺, 朱榆, 张秀芳. 水泥净浆和水泥砂浆材料的Ⅰ型断裂韧度测定[J]. 水利学报, 2008(1):41-46. doi: 10.3321/j.issn:0559-9350.2008.01.007

    XU Shilang, ZHU Yu, ZHANG Xiufang. Determination of mode I fracture toughness of cement paste and mortar[J]. Journal of Hydraulic Engineering,2008(1):41-46(in Chinese). doi: 10.3321/j.issn:0559-9350.2008.01.007
    [22] 徐世烺. 混凝土断裂试验与断裂韧度测定标准方法[M]. 北京: 机械工业出版社, 2009.

    XU Shilang. Standard method for fracture test and determination of fracture toughness of concrete[M]. Beijing: China Machine Press, 2009(in Chinese).
    [23] 徐世烺, 卜丹, 张秀芳. 不同尺寸楔入式紧凑拉伸试件双K断裂参数的试验测定[J]. 土木工程学报, 2008, 41(2):70-76. doi: 10.3321/j.issn:1000-131X.2008.02.011

    XU Shilang, BU Dan, ZHANG Xiufang. A study on double-kfracture parameters by using wedge-splitting test on compacttension specimens of various sizes[J]. China Civil Engineering Journal,2008,41(2):70-76(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.02.011
    [24] BENABED B, KADRI E H, AZZOUZ L, et al. Properties of self-compacting mortar made with various types of sand[J]. Cement and Concrete Composites,2012,34(10):1167-1173. doi: 10.1016/j.cemconcomp.2012.07.007
    [25] 徐永模, 彭杰, 赵昕南. 评价减水剂性能的新方法—砂浆坍落扩展度[J]. 硅酸盐学报, 2002(S1):124-130.

    XU Yongmo, PENG Jie, ZHAO Xinnan. A new approach of evaluating superplasticizers by mortar slump flow test[J]. Journal of The Chinese Ceramic Society,2002(S1):124-130(in Chinese).
    [26] LI X Y, LIU Y M, LI W G, et al. Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste[J]. Construction and Building Materials,2017,145:402-410. doi: 10.1016/j.conbuildmat.2017.04.058
    [27] LI W G, LI X Y, CHEN S J, et al. Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste[J]. Construction and Building Materials,2017,136:506-514. doi: 10.1016/j.conbuildmat.2017.01.066
    [28] LU Z Y, CHEN B M, LEUNG C Y. Aggregation size effect of graphene oxide on its reinforcing efficiency to cement-based materials[J]. Cement and Concrete Composites,2019,100:85-91. doi: 10.1016/j.cemconcomp.2019.04.005
    [29] TANVIR S Q, DAMAN K P. Impact of graphene oxide and highly reduced graphene oxide on cement based compo-sites[J]. Construction and Building Materials,2019,206:71-83. doi: 10.1016/j.conbuildmat.2019.01.176
    [30] PENG H, GE Y P, CAI C S, et al. Mechanical properties and microstructure of graphene oxide cement-based composites[J]. Construction and Building Materials,2019,194:102-109. doi: 10.1016/j.conbuildmat.2018.10.234
    [31] TONG T, FAN Z, LIU Q, et al. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials[J]. Construction and Building Materials,2016,106:102-114. doi: 10.1016/j.conbuildmat.2015.12.092
    [32] LIU Q, TONG T, LIU S H, et al. Investigation of using hybrid recycled powder from demolished concrete solids and clay bricks as a pozzolanic supplement for cement[J]. Construction and Building Materials,2014,73:754-763. doi: 10.1016/j.conbuildmat.2014.09.066
    [33] 刘巧玲, 李汉彩, 彭玉娇, 等. 多壁碳纳米管增强水泥基复合材料的纳米力学性能[J]. 复合材料学报, 2020, 37(4): 952-961.

    LIU Qiaoling, LI Hancai, PENG Yujiao, et al. Nanomechanical properties of MWCNTS/cementitious composites[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 952-961(in Chinese).
    [34] CONSTANTINIDES G, ULM F J. The nanogranular nature of C-S-H[J]. Journal of the Mechanics and Physics of Solids,2007,55:64-90. doi: 10.1016/j.jmps.2006.06.003
    [35] 刘仍光, 韩方晖, 阎培渝. 纳米压痕研究含矿渣硬化浆体C-S-H凝胶的特性[J]. 中国科学: 技术科学, 2012, 55(8):1395-1402.

    LIU Rengguang, HAN Fanghui, YAN Peiyu. Characteristics of two types of C-S-H gel in hardened complex binder pastes blended with slag[J]. Scientia Sinica (Technologica),2012,55(8):1395-1402(in Chinese).
    [36] MOKHTAR M M, ABO-EL-ENEIN S A, HASSAAN M Y, et al. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement[J]. Construction and Building Materials,2017,138:333-339. doi: 10.1016/j.conbuildmat.2017.02.021
    [37] LI G Y, WANG P M, ZHAO X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon,2005,43(6):1239-1245. doi: 10.1016/j.carbon.2004.12.017
    [38] MOHAMED S, LEUNG T, JASON F, et al. Enhanced properties of graphene/fly ash geopolymeric composite cement[J]. Cement and Concrete Research,2015,67:292-299. doi: 10.1016/j.cemconres.2014.08.011
    [39] MOHAMMAD A R, JAVAD R, ZHOU W, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano,2009,3(12):3884-3890. doi: 10.1021/nn9010472
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  1256
  • HTML全文浏览量:  433
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 录用日期:  2020-05-22
  • 网络出版日期:  2020-06-10
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回