留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚酰胺胺改性碳纤维/尼龙复合材料制备及性能

张顶顶 张福华 杨吉祥 李晓峰 李彦希 曾骥

张顶顶, 张福华, 杨吉祥, 等. 聚酰胺胺改性碳纤维/尼龙复合材料制备及性能[J]. 复合材料学报, 2021, 38(2): 406-413. doi: 10.13801/j.cnki.fhclxb.20200610.002
引用本文: 张顶顶, 张福华, 杨吉祥, 等. 聚酰胺胺改性碳纤维/尼龙复合材料制备及性能[J]. 复合材料学报, 2021, 38(2): 406-413. doi: 10.13801/j.cnki.fhclxb.20200610.002
ZHANG Dingding, ZHANG Fuhua, YANG Jixiang, et al. Preparation and properties of polyamidoamine modified carbon fiber/polyamide composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 406-413. doi: 10.13801/j.cnki.fhclxb.20200610.002
Citation: ZHANG Dingding, ZHANG Fuhua, YANG Jixiang, et al. Preparation and properties of polyamidoamine modified carbon fiber/polyamide composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 406-413. doi: 10.13801/j.cnki.fhclxb.20200610.002

聚酰胺胺改性碳纤维/尼龙复合材料制备及性能

doi: 10.13801/j.cnki.fhclxb.20200610.002
基金项目: 国家自然科学基面上项目(51771108);上海市自然科学基金(15ZR1420500);上海深远海洋装备材料工程技术研究中心项目(19DZ2253100)
详细信息
    通讯作者:

    张福华,博士,副教授,硕士生导师,研究方向为海洋工程树脂基复合材料应用基础 E-mail:fhzhang@shmtu.edu.cn

  • 中图分类号: TB332;TQ327.3

Preparation and properties of polyamidoamine modified carbon fiber/polyamide composites

  • 摘要: 为改善碳纤维增强尼龙复合材料(CFRPA)的加工流动性和力学性能,采用聚酰胺胺(PAMAM)树枝状高分子作为改性剂,通过熔融共混制备出碳纤维(CF)增强尼龙66(PA66)复合材料。采用DSC、万能试验机和SEM分别对改性后PA66的结晶行为、CFRPA的拉伸性能及微观组织形貌进行测试表征。结果表明,添加PAMAM可以极大地改善PA66流动性,有效降低CFRPA熔融共混时的黏度。PAMAM添加量为PA66的1wt%时,PA66的结晶度最大(为12.75%)。熔融指数(MFR)提高至112 g/10 min,较未改性的PA66的MFR增长了814.47%。对应的不同CF含量的CFRPA熔融共混时的平衡扭矩均有所降低,且CF可均匀地分布在PA66基体中,当CF含量为40wt%时,CFRPA的拉伸强度最高,为118 MPa。

     

  • 图  1  PAMAM改善PA66流动性机制示意图

    Figure  1.  Schematic diagram of the mechanism for improving the fluidity of PA66 by PAMAM

    图  2  不同PAMAM含量下PA66的DSC曲线

    Figure  2.  DSC curves of the PA66 with different PAMAM contents

    图  3  不同CF含量的CFRPA的平衡扭矩

    Figure  3.  Equilibrium torques of the CFRPA with different CF contents

    图  4  CFRPA的应力-应变曲线

    Figure  4.  Stress-strain curves of the CFRPA

    图  5  经PAMAM改性的CFRPA的应力-应变曲线

    Figure  5.  Stress-strain curves of the CFRPA modified by PAMAM

    图  6  不同CF含量、添加与未添加PAMAM的CFRPA的SEM图像

    Figure  6.  SEM images of modified and unmodified CFRPA with different CF contents

    表  1  不同聚酰胺胺(PAMAM)含量的尼龙66(PA66)试样标记

    Table  1.   Symbols of the polyamide 66 (PA66) samples with different polyamide amine (PAMAM) contents by PAMAM

    SamplePAMAM content/wt%
    PA66 0
    PAMAM/PA-1 0.1
    PAMAM/PA-2 0.5
    PAMAM/PA-3 1.0
    PAMAM/PA-4 1.5
    PAMAM/PA-5 2.0
    下载: 导出CSV

    表  2  不同碳纤维(CF)含量、未改性与经PAMAM改性的碳纤维增强尼龙复合材料(CFRPA)试样

    Table  2.   Samples of modified and unmodified carbon fiber reinforced polyamide (CFRPA) with different carbon nanofiber (CF) contents

    SampleMass ratio of PAMAM
    to PA66/%
    CF content/wt%
    CFRPA-20 0 20
    CFRPA-25 0 25
    CFRPA-30 0 30
    CFRPA-35 0 35
    CFRPA-40 0 40
    PAMAM/CFRPA-20 1 20
    PAMAM/CFRPA-25 1 25
    PAMAM/CFRPA-30 1 30
    PAMAM/CFRPA-35 1 35
    PAMAM/CFRPA-40 1 40
    下载: 导出CSV

    表  3  不同PAMAM含量下PA66的熔融指数(MFR)

    Table  3.   Melt flow rates (MFR) of PA66 with different PAMAM contents

    SamplePAMAM content/wt%MFR/
    (g·10 min−1)
    MFR growth rate/%
    PA66 0 12 0
    PAMAM/PA-1 0.1 22 79.63
    PAMAM/PA-2 0.5 29 138.55
    PAMAM/PA-3 1.0 112 814.47
    PAMAM/PA-4 1.5 134 994.17
    PAMAM/PA-5 2.0 194 1 484.93
    Note: MFR growth rate—Difference between the MFR of modified PA66 and the PA66 divided by the MFR of PA66.
    下载: 导出CSV

    表  4  不同PAMAM含量下PA66的拉伸强度和断裂伸长率

    Table  4.   Tensile strength and fracture elongation of PA66 with different PAMAM contents

    SampleTensile strength/MPaStrength loss rate/%Elongation at break/%
    PA66 76.8 0.00 3.1
    PAMAM/PA-1 72.6 5.47 8.8
    PAMAM/PA-2 69.8 9.11 9.2
    PAMAM/PA-3 72.6 5.47 9.9
    PAMAM/PA-4 70.8 7.81 10.2
    PAMAM/PA-5 59.9 22.01 10.7
    Note: Strength loss rate—Difference between the tensile strength of PA66 and the modified PA66 divided by the tensile strength of PA66.
    下载: 导出CSV
  • [1] PARK S J, SEO M K. Carbon fiber-reinforced polymer composites: Preparation, properties, and applications[J]. Polymer Composites,2012,1:135-183.
    [2] WAN Y, TAKAHASHI J. Tensile properties and aspect ratio simulation of transversely isotropic discontinuous carbon fiber reinforced thermoplastics[J]. Composites Science and Technology,2016,137:167-176. doi: 10.1016/j.compscitech.2016.10.024
    [3] POZEGIC T R, ANGUITA J V, HAMERTON I, et al. Multi-functional carbon fiber composites using carbon nanotubes as an alternative to polymer sizing[J]. Scientific Reports,2016,6:37334. doi: 10.1038/srep37334
    [4] MA Y, UEDA M, YOKOZEKI T, et al. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites[J]. Composite Structures,2017,160:89-99. doi: 10.1016/j.compstruct.2016.10.037
    [5] WAN Y, TAKAHASHI J. Deconsolidation behavior of carbon fiber reinforced thermoplastics[J]. Journal of Reinforced Plastics and Composites, 2014, 33(17):1613-1624.
    [6] BRINKSMEIER E, JANSSEN R. Drilling of multi-layer composite materials consisting of carbon fiber reinforced plastics (CFRP), titanium and aluminum alloys[J]. CIRP Annals,2002,51(1):87-90. doi: 10.1016/S0007-8506(07)61472-3
    [7] LEE H, OHSAWA I, TAKAHASHI J. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties[J]. Applied Surface Science,2015,328:241-246. doi: 10.1016/j.apsusc.2014.12.012
    [8] DENKENA B, BOEHNKE D, DEGE J H. Helical milling of CFRP-titanium layer compounds[J]. CIRP Journal of Manufacturing Science and Technology,2008,1(2):64-69. doi: 10.1016/j.cirpj.2008.09.009
    [9] ROBERTS T. Rapid growth forecast for carbon fiber market[J]. Reinforced Plastics,2007,51(2):10-13. doi: 10.1016/S0034-3617(07)70051-6
    [10] HENNING F, ERNST H, BRÜSSEL R. LFTs for automotive applications[J]. Reinforced Plastics,2005,49(2):24-33. doi: 10.1016/S0034-3617(05)00546-1
    [11] REZAEI F, YUNUS R, IBRAHIM N A, et al. Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet[J]. Polymer-Plastics Technology and Engineering,2008,47(4):351-357. doi: 10.1080/03602550801897323
    [12] FRIEDRICH K, ALMAJID A A. Manufacturing aspects of advanced polymer composites for automotive applications[J]. Applied Composite Materials,2013,20(2):107-128. doi: 10.1007/s10443-012-9258-7
    [13] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING L Y, BAO J W, LI S M, et al. Development status and facing challenge advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [14] YAO S S, JIN F L, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007
    [15] NGUYEN-TRAN H D, HOANG V T, DO V T, et al. Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide6/polypro-pylene composites for lightweight automotive parts[J]. Materials,2018,11(3):429. doi: 10.3390/ma11030429
    [16] YAMAMOTO T, UEMATSU K, IRISAWA T, et al. Controlling of the interfacial shear strength between thermoplastic resin and carbon fiber by adsorbing polymer particles on carbon fiber using electrophoresis[J]. Composites Part A: Applied Science and Manufacturing,2016,88:75-78. doi: 10.1016/j.compositesa.2016.05.021
    [17] COLUCCI G, OSTROVSKAYA O, FRACHE A, et al. The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers[J]. Journal of Applied Polymer Science,2015,132(29):42275.
    [18] 石继梅, 王源升, 葛宝, 等. γ射线辐照对碳纤维表面接枝改性的影响[J]. 复合材料学报, 2012, 29(1):43-48.

    SHI J M, WANG Y S, GE B, et al. Effects of γ-ray irradiation on carbon fiber surface graft modification[J]. Acta Materiae Compositae Sinica,2012,29(1):43-48(in Chinese).
    [19] DUCHOSLAV J, UNTERWEGER C, STEINBERGER R, et al. Investigation on the thermo-oxidative stability of carbon fiber sizings for application in thermoplastic compo-sites[J]. Polymer Degradation and Stability,2016,125:33-42. doi: 10.1016/j.polymdegradstab.2015.12.016
    [20] XU H, ZHANG X, LIU D, et al. Cyclomatrix-type polyphosphazene coating: Improving interfacial property of carbon fiber/epoxy composites and preserving fiber tensile strength[J]. Composites Part B: Engineering,2016,93:244-251. doi: 10.1016/j.compositesb.2016.03.033
    [21] 王天玉, 黄玉东, 曹正华. 甲基丙烯酰氧基倍半硅氧烷改性碳纤维/聚芳基乙炔复合材料界面性能[J]. 复合材料学报, 2008, 25(5):45-50. doi: 10.3321/j.issn:1000-3851.2008.05.008

    WANG T Y, HUANG Y D, CAO Z H. Interfacial properties of methacryl silsesquioxane modified carbon fiber/polyarylacetylene composites[J]. Acta Materiae Compositae Sinica,2008,25(5):45-50(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.008
    [22] LI J. Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites[J]. Applied Surface Science,2008,255(5):2822-2824. doi: 10.1016/j.apsusc.2008.08.013
    [23] JING W, HUI C, QIONG W, et al. Surface modification of carbon fibers and the selective laser sintering of modified carbon fiber/nylon 12 composite powder[J]. Materials & Design,2017,116:253-260.
    [24] ZHANG T, SONG Y, ZHAO Y, et al. Effect of hybrid sizing with nano-SiO2 on the interfacial adhesion of carbon fibers/nylon 6 composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,553:125-133.
    [25] KARSLI N G, OZKAN C, AYTAC A, et al. Effects of sizing materials on the properties of carbon fiber-reinforced polyamide 6, 6 composites[J]. Polymer Composites,2013,34(10):1583-1590. doi: 10.1002/pc.22556
    [26] IRISAWA T, INAGAKI R, IIDA J, et al. The influence of oxygen containing functional groups on carbon fibers for mechanical properties and recyclability of CFRTPs made with in-situ polymerizable polyamide 6[J]. Composites Part A: Applied Science and Manufacturing,2018,112:91-99. doi: 10.1016/j.compositesa.2018.05.035
    [27] HUI C, QINGYU C, JING W, et al. Interfacial enhancement of carbon fiber/nylon 12 composites by grafting nylon 6 to the surface of carbon fiber[J]. Applied Surface Science,2018,441:538-545. doi: 10.1016/j.apsusc.2018.01.158
    [28] CHOI E Y, KIM M H, KIM C K. Fabrication of carbon fiber grafted with acyl chloride functionalized multi-walled carbon nanotubes for mechanical reinforcement of nylon 6, 6[J]. Composites Science and Technology,2019,178:33-40. doi: 10.1016/j.compscitech.2019.05.012
    [29] KIM B J, CHA S H, KANG G H, et al. Interfacial control through ZnO nanorod growth on plasma-treated carbon fiber for multiscale reinforcement of carbon fiber/polyamide 6 composites[J]. Materials Today Communications,2018,17:438-449. doi: 10.1016/j.mtcomm.2018.10.011
    [30] 付豪, 陈俊林, 王凯, 等. 热处理对碳纤维/聚酰胺6复合材料界面结晶及力学性能的影响[J]. 复合材料学报, 2018, 35(4):815-822.

    FU H, CHEN J L, WANG K, et al. Effects of heat treatments on the interfacial crystallization and mechanical properties of carbon fiber/polyamide 6 composites[J]. Acta Materiae Compositae Sinica,2018,35(4):815-822(in Chinese).
    [31] BOAS U, HEEGAARD P M H. Dendrimers in drug research[J]. Chemical Society Reviews,2004,33(1):43-63. doi: 10.1039/b309043b
    [32] SARIN H, KANEVSKY A S, WU H, et al. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells[J]. Journal of Translational Medicine,2008,6(1):80. doi: 10.1186/1479-5876-6-80
    [33] 郭永坤, 王宛, 田文得, 等. 表面修饰富勒烯的聚酰胺-胺树枝状分子与生物膜的相互作用研究[J]. 高分子学报, 2016(10):1418-1424. doi: 10.11777/j.issn1000-3304.2016.16039

    GUO Y K, WANG W, TIAN W D, et al. Computer simulation of C60-grafted polyamide-amine dendrimers (PAMAM) interacting with membrane[J]. Acta Polymerica Sinica,2016(10):1418-1424(in Chinese). doi: 10.11777/j.issn1000-3304.2016.16039
    [34] MEI L, HE X, LI Y, et al. Grafting carbon nanotubes onto carbon fiber by use of dendrimers[J]. Materials Letters,2010,64(22):2505-2508. doi: 10.1016/j.matlet.2010.07.056
    [35] ZHANG R L, GAO B, ZHANG J, et al. Propagation of PAMAM dendrimers on the carbon fiber surface by in situ polymerization: A novel methodology for fiber/matrix composites[J]. Applied Surface Science,2015,359:812-818. doi: 10.1016/j.apsusc.2015.10.204
    [36] 吴彤, 罗运军, 谭惠民, 等. 树形分子对PA11/PA6共混物性能的影响[J]. 工程塑料应用, 2001, 29(5):1-3. doi: 10.3969/j.issn.1001-3539.2001.05.001

    WU T, LUO Y J, TAN H M, et al. Influence of dendrimer on the property of PA11/PA6 blend[J]. Engineering Plastics Application,2001,29(5):1-3(in Chinese). doi: 10.3969/j.issn.1001-3539.2001.05.001
    [37] 李晓萌, 罗运军, 谭惠民, 等. 树枝形聚酰胺胺对尼龙6性能影响的研究[J]. 工程塑料应用, 2003(2):5-7. doi: 10.3969/j.issn.1001-3539.2003.02.003

    LI X M, LUO Y J, TAN H M, et al. Study on the influence of PAMAM dendrimer on properties of nylon 6[J]. Engineering Plastics Application,2003(2):5-7(in Chinese). doi: 10.3969/j.issn.1001-3539.2003.02.003
    [38] 张帆, 周立, 刘耀驰, 等. 一种含树枝单元的高流动性尼龙6的原位聚合及性能测试[J]. 高分子学报, 2008, 1(3):288-291. doi: 10.3321/j.issn:1000-3304.2008.03.013

    ZHANG F, ZHOU L, LIU Y C, et al. In-situ polymerization and characterigation of high fluidity nylon 6 containing low content of pamam units[J]. Acta Polymerica Sinica,2008,1(3):288-291(in Chinese). doi: 10.3321/j.issn:1000-3304.2008.03.013
    [39] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    National Fiber Reinforced Plastics Standardization Technical Committee. Fiber-reinforced plastics composites Determination of tensile properties: GB/T 1447—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1298
  • HTML全文浏览量:  546
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 录用日期:  2020-06-08
  • 网络出版日期:  2020-06-11
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回