留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温下双搭接钢-CFRP板胶粘界面力学性能试验

陈卓异 彭彦泽 李传习 郭靖

陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP板胶粘界面力学性能试验[J]. 复合材料学报, 2021, 38(2): 449-460. doi: 10.13801/j.cnki.fhclxb.20200608.002
引用本文: 陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP板胶粘界面力学性能试验[J]. 复合材料学报, 2021, 38(2): 449-460. doi: 10.13801/j.cnki.fhclxb.20200608.002
CHEN Zhuoyi, PENG Yanze, LI Chuanxi, et al. Experimental study for the adhesive interface mechanical properties of double lapped steel-CFRP plate at high temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 449-460. doi: 10.13801/j.cnki.fhclxb.20200608.002
Citation: CHEN Zhuoyi, PENG Yanze, LI Chuanxi, et al. Experimental study for the adhesive interface mechanical properties of double lapped steel-CFRP plate at high temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 449-460. doi: 10.13801/j.cnki.fhclxb.20200608.002

高温下双搭接钢-CFRP板胶粘界面力学性能试验

doi: 10.13801/j.cnki.fhclxb.20200608.002
基金项目: 国家自然科学基金 (51708047;51778069);湖南省自然科学基金(2019JJ50670);湖南省教育厅优秀青年基金(19B013)
详细信息
    通讯作者:

    李传习,博士,教授,博士生导师,研究方向为桥梁结构新材料、新结构  E-mail:lichuanxi2@163.com

  • 中图分类号: TB332;TU391;TU599

Experimental study for the adhesive interface mechanical properties of double lapped steel-CFRP plate at high temperature

  • 摘要: 高温环境下钢-碳纤维增强聚合物复合材料(CFRP)板的胶粘界面是CFRP粘贴加固钢结构的薄弱环节。为掌握温度对钢-CFRP板胶粘界面力学性能的影响,制作了双搭接接头试件,开展了3种胶粘剂在4种温度下(25℃、55℃、70℃和90℃)的静力拉伸试验。探索了接头试件的破坏模式、荷载-位移关系、CFRP板表面应变分布、界面剪应力分布和粘结-滑移关系等。结果表明:当温度低于55℃时,试件的破坏模式与胶粘剂种类相关性更大,当温度高于70℃时,不同胶粘剂的破坏模式具有相似性,且均出现了CFRP板撕裂。温度对不同胶粘试件的承载力影响存在差异,HJY-4105高韧性环氧树脂结构胶粘剂(HJY胶)试件的承载力随温度的升高而增大,LICA-100A/B 环氧树脂结构胶粘剂(LICA胶)试件的温度稳定性较差,Sikadur-30 CN双组份环氧结构加固碳板胶(SIKA30胶)试件在55℃时承载力最高。随着温度升高,胶粘层的剪切强度、界面剪应力峰值和剪切刚度下降,胶粘剂的延性增加,峰值剪应力不影响试件的抗拉强度。温度对粘结-滑移关系的影响显著,HJY胶随着温度的升高,粘结-滑移本构的延性增加,破坏模式由脆性破坏变为延性破坏。研究表明:合理的耐高温胶应用于钢结构加固,能适应自然高温环境的不利影响。

     

  • 图  1  钢-CFRP板双搭接试件几何尺寸及应变片布置

    Figure  1.  Geometric dimension of double lapped steel-CFRP plate specimen and layout of strain gauges

    ta—Thickness of adhesive; tf—Thickness of CFRP

    图  2  试件加载装置

    Figure  2.  Specimen loading device

    图  3  钢-CFRP板双搭接试件破坏模式

    Figure  3.  Failure modes of double lapped steel-CFRP plate specimens

    图  4  不同温度下钢-CFRP板试件的荷载-位移曲线

    Figure  4.  Load-displacement curves of double lapped steel-CFRP plate specimens at different temperatures

    图  5  不同温度下钢-CFRP板试件的极限荷载

    Figure  5.  Ultimate loads of double lapped steel-CFRP plate specimens at different temperatures

    图  6  CFRP板表面应变分布

    Figure  6.  Strain distributions on the surface of CFRP plates

    图  7  钢-CFRP板双搭接试件界面剪应力分布

    Figure  7.  Interfacial shear stress distributions of double lapped steel-CFRP plate specimens

    图  8  常见的粘结-滑移模型

    τmax—Peak shear stress; S1—Slip corresponding to peak shear stress; S2—Slip amount corresponding to the peak shear stress beginning to decline in a trapezoidal model; Sf—Limit slip

    Figure  8.  Common bond-slip models

    图  9  钢-CFRP板双搭接试件的粘结-滑移曲线

    Figure  9.  Bond-slip curves of double lapped steel-CFRP plate specimens

    表  1  碳纤维增强聚合物复合材料(CFRP)板、钢板及胶粘剂材料参数

    Table  1.   Material parameters of carbon fiber reinforced polymer (CFRP) plate, steel plate and adhesives

    Material typeTensile strength/MPaElasticity modulus/GPaElongation at break/%Glass transition temperature Tg/℃
    CFRP plate 1 800 161.2 1.1
    Q345qD steel plate 514 206 18
    HJY adhesive 34.0 4.10 0.86 89.9
    LICA adhesive 26.6 3.99 0.69
    SIKA30 adhesive 25.3 12.13 0.22 52.5
    下载: 导出CSV

    表  2  钢-CFRP板双搭接试件参数及试验结果

    Table  2.   Parameters of double lapped steel-CFRP plate specimens and test results

    Adhesive typeSpecimen
    number
    Limit
    displacement/mm
    Average
    displacement/mm
    Ultimate
    load/kN
    Average
    load/kN
    Failure
    mode
    HJY adhesive HJY-25-1 2.16 1.90 98.85 87.95 a
    HJY-25-2 1.64 77.05 a+d
    HJY-55-1 4.38 4.17 189.53 179.05 a
    HJY-55-2 3.96 168.56 a
    HJY-70-1 4.78 4.45 193.76 185.48 a+b
    HJY-70-2 4.12 177.20 a+b
    HJY-90-1 5.83 5.33 205.43 198.49 a+b+c
    HJY-90-2 4.83 191.55 a+b+c
    LICA adhesive LICA-25-1 2.47 2.78 105.36 99.52 a+c+e
    LICA-25-2 3.08 93.67 c+e
    LICA-55-1 2.52 2.34 58.07 54.54 c+d+e
    LICA-55-2 2.16 51.01 c
    LICA-70-1 2.15 2.47 82.08 85.31 a+b+c
    LICA-70-2 2.78 88.54 b+c
    LICA-90-1 3.01 2.81 92.45 99.01 a+b+c
    LICA-90-2 2.61 105.56 a+b+c
    SIKA30 adhesive SIKA30-25-1 1.28 1.28 52.47 53.05 a+c
    SIKA30-25-2 1.287 53.63 a+c
    SIKA30-55-1 3.44 3.90 158.07 166.29 a+c+d
    SIKA30-55-2 4.36 174.50 a+c+d
    SIKA30-70-1 4.82 4.49 134.04 145.77 a+b
    SIKA30-70-2 4.16 157.50 a+b+c
    SIKA30-90-1 2.30 2.54 84.89 74.08 a+b+c
    SIKA30-90-2 2.77 63.27 a+b+c
    Notes: Rules of specimen label “***-***-***”—Characters before the first “-”—Adhesive type, characters between the two “-”—Test temperature, character after the second “-”—Serial number of the specimen in each group; Failure modes: a—CFRP plate delamination; b—CFRP plate fracture; c—Steel and adhesive debonding failures; d—CFRP plate and adhesive debonding failure; e—Adhesive shatter; HJY—HJY-4105 high toughness epoxy structural; LICA—LICA-100A/B epoxy structural; SIKA 30—ikadur-30 CN two-component epoxy structure reinforced carbon plate; HJY-x-y:x—Test temperature; y—Specimen number; LICA-x-y: x—Test temperature; y—Specimen number; SIKA 30-x-y: x—Test temperature; y—Specimen number.
    下载: 导出CSV
  • [1] GHOLAMI M, SAM A R M, YATIM J M, et al. A review on steel/CFRP strengthening systems focusing environmental performance[J]. Construction and Building Materials,2013,47:301-310. doi: 10.1016/j.conbuildmat.2013.04.049
    [2] 王作虎, 刘杜, 袁非凡, 等. CFRP复合材料加固钢筋混凝土柱偏心受压性能尺寸效应的试验[J]. 复合材料学报, 2019(5):1275-1283.

    WANG Z H, LIU D, YUAN F F, et al. Experimental study on size effect of reinforced concrete columns strengthened with CFRP composite under eccentric loads[J]. Acta Materiae Compositae Sinica,2019(5):1275-1283(in Chinese).
    [3] 邓江东, 宗周红, 黄培彦. FRP-混凝土界面疲劳性能分析[J]. 复合材料学报, 2010(1):155-161.

    DENG J D, ZONG Z H, HUANG P Y. Analysis of FRP-concrete interfacial fatigue properties[J]. Acta Matriae Compositae Sinica,2010(1):155-161(in Chinese).
    [4] 李传习, 李游, 陈卓异, 等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报, 2017(3):121-131. doi: 10.3969/j.issn.1001-7372.2017.03.013

    LI C X, LI Y, CHEN Z Y. Fatigue cracking reason and detail dimension of reinforcement about transverse diaphragm of steel box girder[J]. China Journal of Highway and Transport,2017(3):121-131(in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.013
    [5] 陈卓异, 李传习, 柯璐, 等. 某悬索桥钢箱梁疲劳病害及处治方法研究[J]. 土木工程学报, 2017(3):11-20.

    CHEN Z Y, LI C X, KE L, et al. Study on fatigue damages and retrofit methods of steel box girder in a suspension bridge[J]. Journal of Civil Engineering,2017(3):11-20(in Chinese).
    [6] ZHAO X L, ZHANG L. State-of-the-art review on FRP strengthened steel structures[J]. Engineering Structures,2007,29(8):1808-1823. doi: 10.1016/j.engstruct.2006.10.006
    [7] TENG J G, YU T, FERNANDO D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research,2012,78:131-143.
    [8] BELARBI A, ACUN B. FRP systems in shear strengthening of reinforced concrete structures[J]. Procedia Engineering,2013,57:2-8. doi: 10.1016/j.proeng.2013.04.004
    [9] DE W L, FERNANDO D, NGUYEN V T, et al. FRP strengthening of 60 years old pre-stressed concrete bridge deck units[J]. Engineering Structures,2017,143:346-357. doi: 10.1016/j.engstruct.2017.03.062
    [10] HAGHANI R. Analysis of adhesive joints used to bond FRP laminates to steel members—A numerical and experimental study[J]. Construction and Building Materials,2010,24(11):2243-2251. doi: 10.1016/j.conbuildmat.2010.04.032
    [11] HE J, XIAN G. Debonding of CFRP-to-steel joints with CFRP delamination[J]. Composite Structures,2016,153:12-20. doi: 10.1016/j.compstruct.2016.05.100
    [12] XIA S H, TENG J G. Behaviour of FRP-to-steel bonded joints[C]//International Institute for FRP in Construction (IIFC). Hong Kong, 2005: 411-418.
    [13] 李传习, 曹先慧, 柯璐, 等. 高温对结构加固用环氧黏结剂力学性能的影响[J]. 建筑材料学报, 2020, 23(3): 642-649.

    LI C X, CAO X H, KE L, et al. Effects of high temperatures on the mechanical properties of epoxy adhesives for structural strengthening[J]. Journal of Building Materials, 2020, 23(3): 642-649(in Chinese).
    [14] 张玉平, 杨宁, 李传习. 无铺装层钢箱梁日照温度场分析[J]. 工程力学, 2011(6):156-162.

    ZHANG Y P, YANG N, LI C X. Research on temperature field of steel box girder without pavement caused by the solar radiations[J]. Engineering Mechanics,2011(6):156-162(in Chinese).
    [15] 李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12):3534-3547.

    LI C X, KE L, CHEN Z Y, et al. Experimental study and numerical simulation for bond behavior of interface between CFRP and steel[J]. Acta Materiae Compositae Silica,2018,35(12):3534-3547(in Chinese).
    [16] YU T, FERNANDO D, TENG J G, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B: Engineering,2012,43(5):2279-2289. doi: 10.1016/j.compositesb.2012.01.024
    [17] WU C, ZHAO X L, DUAN W H. Bond characteristics between ultra high modulus CFRP laminates and steel[J]. Thin-Walled Structures,2012,51:147-157. doi: 10.1016/j.tws.2011.10.010
    [18] 李传习, 李游, 高有为, 等. 纳米SiO2掺量对胶粘CFRP板-钢搭接界面黏结性能的影响[J]. 复合材料学报, 2020, 37(10): 2619-2635.

    LI C X, LI Y, GAO Y W, et al. Effect of nano-SiO2 content on the interface performance of glued CFRP-steel specimen[J]. Acta Materiae Compositae Silica, 2020, 37(10): 2619-2635(in Chinese).
    [19] NARMASHIRI K, RAMLI N H, JUMAAT M Z. Failure analysis and structural behaviour of CFRP strengthened steel I-Beams[J]. Construction and Building Materials,2012(30):1-9.
    [20] 朱德举, 姚明侠, 张怀安, 等. 动态拉伸荷载下温度对CFRP/钢板单搭接剪切接头力学性能的影响[J]. 土木工程学报, 2016(8):28-35.

    ZHU D J, YAO M X, ZHANG H A, et al. Temperature effect on the mechanical properties of CFRP/steel single-lap shear joints under dynamic tensile loading[J]. Journal of Civil Engineering,2016(8):28-35(in Chinese).
    [21] AL-SHAWAF A. Effect of elevated temperature on bond behaviour of high modulus CFRP/steel double-strap joints[J]. Australian Journal of Structural Engineering,2009,10(1):63-74. doi: 10.1080/13287982.2009.11465033
    [22] AL-MOSAWE A, Al-MAHAIDI R, ZHAO X L. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading[J]. Construction and Building Materials,2015,98:489-501. doi: 10.1016/j.conbuildmat.2015.08.130
    [23] FERNANDO D, YU T, TENG J G. Behavior of CFRP laminates bonded to a steel substrate using a ductile adhesive[J]. Journal of Composites for Construction,2014,18(2):1-20.
    [24] 李传习, 罗南海, 柯璐. 胶膜连接CFRP板-钢搭接接头室温条件的力学性能试验[J]. 复合材料学报, 2020, 37(2): 318-327.

    LI C X, LUO N H, KE L, et al. Experimental study on the CFRP laminate-steel lap joints connected with a film adhesive at room temperature[J]. Acta Materiae Compositae Silica, 2020, 37(2): 318-327(in Chinese).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  939
  • HTML全文浏览量:  360
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-16
  • 录用日期:  2020-05-22
  • 网络出版日期:  2020-06-09
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回