留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声发射技术的非标准自密实混凝土三点弯曲梁动态断裂特性

冯璐 陈徐东 张锦华 袁佳怡 程熙媛

冯璐, 陈徐东, 张锦华, 等. 基于声发射技术的非标准自密实混凝土三点弯曲梁动态断裂特性[J]. 复合材料学报, 2021, 38(2): 630-640. doi: 10.13801/j.cnki.fhclxb.20200608.001
引用本文: 冯璐, 陈徐东, 张锦华, 等. 基于声发射技术的非标准自密实混凝土三点弯曲梁动态断裂特性[J]. 复合材料学报, 2021, 38(2): 630-640. doi: 10.13801/j.cnki.fhclxb.20200608.001
FENG Lu, CHEN Xudong, ZHANG Jinhua, et al. Dynamic fracture characteristics of non-standard three-point bending self-compacting concrete beams based on acoustic emission[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 630-640. doi: 10.13801/j.cnki.fhclxb.20200608.001
Citation: FENG Lu, CHEN Xudong, ZHANG Jinhua, et al. Dynamic fracture characteristics of non-standard three-point bending self-compacting concrete beams based on acoustic emission[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 630-640. doi: 10.13801/j.cnki.fhclxb.20200608.001

基于声发射技术的非标准自密实混凝土三点弯曲梁动态断裂特性

doi: 10.13801/j.cnki.fhclxb.20200608.001
基金项目: 国家自然科学基金(51979090);江苏省自然科学优秀青年基金(BK20190075);中国科协青年人才托举项目(2017QNRC001);中央高校基本科研业务费专项资金(B200202076)
详细信息
    通讯作者:

    张锦华,博士,副教授,研究方向为防灾减灾及防护工程 E-mail:zjh982038@163.com

  • 中图分类号: TU528.01;TU398.9

Dynamic fracture characteristics of non-standard three-point bending self-compacting concrete beams based on acoustic emission

  • 摘要: 对不同初始缝高比的自密实混凝土(Self-compacting concrete,SCC)非标准三点弯曲梁开展不同加载速率下的断裂试验,获得其断裂的荷载-裂缝嘴张开口位移曲线及峰值荷载、断裂韧度、临界缝高比增量、弹性模量和柔度系数等断裂参数,结合Pearson相关性检验公式及加载速率效应模型,定量分析初始缝高比、加载速率与断裂参数间的相关性强弱及SCC断裂参数的加载速率效应。结果表明峰值荷载、断裂韧度及弹性模量均存在一定的加载速率效应,柔度系数仅与初始缝高比强相关,弹性模量和断裂韧度是材料的固有属性,不受初始缝高比影响。同时,基于声发射(Acoustic emission,AE)技术对SCC的损伤断裂过程、断裂边界效应及裂缝扩展模式进行分析,结果表明,AE参量能较好地反映混凝土断裂的三阶段特性及边界效应。裂缝的扩展首先以拉伸裂缝为主,剪切裂缝占比随着裂缝扩展过程逐渐增大。

     

  • 图  1  非标准SCC三点弯曲梁示意图

    Figure  1.  Schematic diagram of non-standard three-point bending SCC beam

    图  2  加载装置及声发射(AE)测点布置

    Figure  2.  Loading device and acoustic emission (AE) measuring point arrangement

    图  3  三种缝高比SCC梁不同加载速率下荷载-裂缝嘴张开口位移(P-CMOD)曲线

    Figure  3.  Load-crack mouth opening displacement (P-CMOD) curves of SCC beams of three crack-depth ratios under different loading rates

    图  4  不同加载速率下SCC梁峰值荷载与缝高比的关系

    Figure  4.  Relationships between peak loads Pmax and crack-depth ratios of SCC beams under different loading rates

    图  5  不同加载速率下SCC梁断裂韧度与缝高比的关系

    Figure  5.  Relationship between fracture toughness and crack-depth ratio of SCC beams under different loading rates

    图  6  不同缝高比SCC梁断裂韧度与加载速率的关系

    Figure  6.  Relationships between fracture toughnesses and loading rates of SCC beams of different crack-depth ratios

    图  7  不同加载速率下SCC梁临界缝高比增量Δa与缝高比的关系

    Figure  7.  Relationship between critical crack-depth ratio increment Δa and crack-depth ratio of SCC beams under different loading rates

    图  8  不同缝高比SCC梁临界缝高比增量Δa与加载速率的关系

    Figure  8.  Relationship between critical crack-depth ratio increment Δa and loading rate of SCC beams of different crack-depth ratios

    图  9  不同加载速率下SCC梁弹性模量与缝高比的关系

    Figure  9.  Relationship between elastic modulus and crack-depth ratio of SCC beams under different loading rates

    图  10  不同缝高比SCC梁弹性模量与加载速率的关系

    Figure  10.  Relationship between elastic modulus and loading rate of SCC beams of different crack-depth ratios

    图  11  不同加载速率下SCC梁柔度系数与缝高比的关系

    Figure  11.  Relationships between flexibility coefficients and crack-depth ratios of SCC beams under different loading rates

    图  12  不同缝高比SCC梁柔度系数与加载速率的关系

    Figure  12.  Relationships between flexibility coefficients and loading rates of SCC beams of different crack-depth ratios

    图  13  SCC梁动态弹性模量增长率

    Figure  13.  Growth rate of dynamic elastic modulus of SCC beams

    图  14  SCC梁动态断裂韧度增长率

    Figure  14.  Growth rate of dynamic fracture toughness of SCC beams

    图  15  不同缝高比SCC梁累计振铃计数和累计撞击次数

    Figure  15.  Accumulate counts and accumulative hits of SCC beams of different crack-depth ratios

    图  16  不同加载速率下不同缝高比SCC梁的平均频率(FA)-上升时间与幅值的比值(RA)

    Figure  16.  Average frequency (FA)-ratio of the rise time to the amplitude (RA) values of SCC beams of different crack-depth ratios under different loading rates

    表  1  自密实混凝土(SCC)配合比

    Table  1.   Mix proportion of self-compacting concrete (SCC) kg·m−3

    CementFly ashSilica fumeWaterSuperplasticizerSandStone
    385139262007.51018800
    下载: 导出CSV

    表  2  SCC梁初始缝高比、加载速率与不同断裂参数的相关性

    Table  2.   Correlation between the initial crack-depth ratio, loading rate and different fracture parameters of SCC beams

    Peak loadFlexibility coefficientElastic modulusCritical crack-depth ratioFracture toughness
    Initial crack-depth ratio−0.995* 0.984*0.443−0.950*0.861*
    Loading rate 0.970*−0.607*0.926*−0.4060.885*
    Note: *—Strong correlation between parameters.
    下载: 导出CSV
  • [1] WU Z M, ZHANG Y G, ZHENG J J, et al. An experimental study on the workability of self-compacting lightweight concrete[J]. Construction and Building Materials,2009,23(5):2087-2092. doi: 10.1016/j.conbuildmat.2008.08.023
    [2] PERSSON B. A comparison between mechanical propel-ties of self-compacting concrete and the corresponding properties of normal concrete[J]. Cement and Concrete Research,2001,31(2):193-198. doi: 10.1016/S0008-8846(00)00497-X
    [3] 余振鹏, 黄侨, 赵志青, 等. 自密实轻骨料混凝土压-剪复合受力力学性能[J]. 复合材料学报, 2019, 36(8):1984-1994.

    YU Zhenpeng, HUANG Qiao, ZHAO Zhiqing, et al. Mechanical property of self-compacting lightweight aggregate concrete under combined compression-shear stress[J]. Acta Materiae Compositae Sinica,2019,36(8):1984-1994(in Chinese).
    [4] HADI M N S, ALHUSSAINY F, SHEIKH M N. Behavior of self-compacting concrete columns reinforced longitudinally with steel tubes[J]. Journal of Structural Engineering,2017,143(6):04017024. doi: 10.1061/(ASCE)ST.1943-541X.0001752
    [5] SANTOS S, DA S P R, DE B J. Self-compacting concrete with recycled aggregates-A literature review[J]. Journal of Building Engineering,2019,22:349-371. doi: 10.1016/j.jobe.2019.01.001
    [6] SAINZ-AJA J, CARRASCAL I, POLANCO J A, et al. Self-compacting recycled aggregate concrete using out-of-service railway superstructure wastes[J]. Journal of Cleaner Production,2019,230:945-955. doi: 10.1016/j.jclepro.2019.04.386
    [7] 孙雪, 余振鹏, 谢兴华, 等. 自密实轻集料混凝土双轴受力力学性能[J]. 复合材料学报, 2019, 36(4):993-1000.

    SUN Xue, YU Zhenpeng, XIE Xinghua, et al. Mechanical properties of self-compacting lightweight aggregate concrete under biaxial loading[J]. Acta Materiae Compositae Sinica,2019,36(4):993-1000(in Chinese).
    [8] ZHANG X H, ZHANG W, LUO Y M, et al. Interface shear strength between self-compacting concrete and carbonated concrete[J]. Journal of Materials in Civil Engineering,2020,32(6):0003229.
    [9] DU F Z, LI D S, LI Y Y. Fracture mechanism and damage evaluation of FRP/steel-concrete hybrid girder using acoustic emission technique[J]. Journal of Materials in Civil Engineering,2019,31(7):04019111. doi: 10.1061/(ASCE)MT.1943-5533.0002758
    [10] CHEN C, FAN X Q, CHEN X D. Experimental investigation of concrete fracture behavior with different loading rates based on acoustic emission[J]. Construction and Building Materials,2020,237:117472. doi: 10.1016/j.conbuildmat.2019.117472
    [11] LI S T, FAN X Q, CHEN X D, et al. Development of fracture process zone in full-graded dam concrete under three-point bending by DIC and acoustic emission[J]. Engineering Fracture Mechanics,2020,230:106972. doi: 10.1016/j.engfracmech.2020.106972
    [12] 邓宗才. 混杂纤维增强超高性能混凝土弯曲韧性与评价方法[J]. 复合材料学报, 2016, 33(6):1274-1280.

    DENG Zongcai. Flexural toughness and characterization method of hybrid fibers reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2016,33(6):1274-1280(in Chinese).
    [13] ZHU Y P, ZHANG Y, HUSSEIN H H, et al. Flexural strengthening of reinforced concrete beams or slabs using ultra-high performance concrete (UHPC): A state of the art review[J]. Engineering Structures,2020,205:110035. doi: 10.1016/j.engstruct.2019.110035
    [14] 徐世烺, 赵国藩. 混凝土结构裂缝扩展的双K断裂准则[J]. 土木工程学报, 1992, 2:32-38.

    XU Shilang, ZHAO Guofan. Double K fracture criterion for crack growth of concrete structures[J]. China Civil Engineering Journal,1992,2:32-38(in Chinese).
    [15] 金南国, 金贤玉, 黄晓峰, 等. 自密实混凝土断裂性能的试验研究[J]. 浙江大学学报(工学版), 2009, 43(2):366-369, 400. doi: 10.3785/j.issn.1008-973X.2009.02.031

    JIN Nanguo, JIN Xianyu, HUANG Xiaofeng, et al. Experimental study on fracture properties of self-compacting concrete[J]. Journal of Zhejiang University(Engineering Science),2009,43(2):366-369, 400(in Chinese). doi: 10.3785/j.issn.1008-973X.2009.02.031
    [16] 范向前, 刘决丁, 胡少伟, 等. 中央带裂缝混凝土循环拉伸断裂试验Felicity效应[J]. 复合材料学报, 2019, 36(12):2968-2974.

    FAN Xiangqian, LIU Jueding, HU Shaowei, et al. Cyclic tensile fracture test of concrete with central crack and Felicity effect[J]. Acta Materiae Compositae Sinica,2019,36(12):2968-2974(in Chinese).
    [17] 范向前, 胡少伟, 陆俊. 非标准混凝土三点弯曲梁双K断裂韧度试验研究[J]. 建筑结构学报, 2012, 33(10):152-157.

    FAN Xiangqian, HU Shaowei, LU Jun. Experimental research on double-K fracture toughness of non-standard three point bending concrete beam[J]. Journal of Building Structures,2012,33(10):152-157(in Chinese).
    [18] 范向前, 胡少伟, 朱海堂, 等. 非标准钢筋混凝土三点弯曲梁双K断裂特性[J]. 建筑材料学报, 2015, 18(5):733-736, 762. doi: 10.3969/j.issn.1007-9629.2015.05.003

    FAN Xiangqian, HU Shaowei, ZHU Haitang. Double-K fracture characteristics of three point bending beams of non-standard reinforced concrete[J]. Journal of Building Materials,2015,18(5):733-736, 762(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.05.003
    [19] 荣华, 董伟, 吴智敏, 等. 大初始缝高比混凝土试件双K断裂参数的试验研究[J]. 工程力学, 2012, 1:162-167.

    RONG Hua, DONG Wei, WU Zhimin. Experimental investigation on double-K fracture parameters for large initial crack-depth ratio in concrete[J]. Engineering Mechanics,2012,1:162-167(in Chinese).
    [20] 赖于树, 熊燕, 程龙飞. 混凝土受载试验全过程声发射特性研究与应用[J]. 建筑材料学报, 2015, 18(3):380-386. doi: 10.3969/j.issn.1007-9629.2015.03.005

    LAI Yushu, XIONG Yan, CHENG Longfei. Study of characteristics of acoustic emission during entire loading tests of concrete and its application[J]. Journal of Building Materials,2015,18(3):380-386(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.03.005
    [21] 杨怡, 雷志鹏, 王玉爽, 等. 基于扩展有限元法的混凝土梁断裂性能数值分析[J]. 混凝土, 2018, 4:39-45. doi: 10.3969/j.issn.1002-3550.2018.08.010

    YANG Yi, LEI Zhipeng, WANG Yushuang, et al. Numerical analysis on fracture behavior of concrete beams based on extended finite element method[J]. Concrete,2018,4:39-45(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.08.010
    [22] 中华人民共和国国家发展和改革委员会. 水工混凝土断裂试验规程: DL/T 5332—2005[S]. 北京: 中国电力出版社, 2009.

    National Development and Reform Commission. Norm for fracture tset of hydraulic concrete: DL/T 5332—2005[S]. Beijng: China Electric Power Press, 2009(in Chinese).
    [23] TANDON S, FABER K T. Effects of loading rate on the fracture of cementitious materials[J]. Cement and Concrete Research,1999,29(3):397-406. doi: 10.1016/S0008-8846(98)00223-3
    [24] 张秀芳, 胡少伟, 胡晓威. 混凝土双K断裂韧度的率相关性[J]. 水利学报, 2016, 47(10):1287-1297.

    ZHANG Xiufang, HU Shaowei, HU Xiaowei. Rate dependence of concrete double-K fracture toughnesses[J]. Journal of Hydraulic Engineering,2016,47(10):1287-1297(in Chinese).
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  1176
  • HTML全文浏览量:  330
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-16
  • 录用日期:  2020-05-30
  • 网络出版日期:  2020-06-09
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回